Министерство образования Российской Федерации ГОУ ВПО «Уральский государственный технический университет – УПИ»

ЭКОНОМЕТРИКА

Сборник задач к типовому расчету для студентов факультета информационно-математических технологий и экономического моделирования и факультета экономики и управления всех форм обучения всех специальностей

Екатеринбург 2004 УДК 330.43(076.5)

Составитель С. М. Бородачёв

Научный редактор Г. А. Тимофеева

ЭКОНОМЕТРИКА

Сборник задач к типовому расчету / С. М. Бородачёв. Екатеринбург: ГОУ УГТУ - УПИ, 2003. 16 с.

Сборник задач по эконометрике содержит 10 задач. Включает исходные данные для 30 вариантов. Часть заданий предлагается выполнять по бригадно во время лабораторных работ в компьютерном классе с использованием пакета "STATISTICA"

Предназначен для студентов информационно-математических и экономических специальностей.

Библиогр.: 7 назв.

Подготовлено кафедрой «Анализ систем и принятие решений».

Общие указания

- 1. Перед выполнением вариантов задач в пакете Statistica, рекомендуется повторить в нём соответствующий лекционный пример.
- 2. После выполнения задач рекомендуется проводить аналогичные исследования с данными, подобранными самостоятельно на интересующую тему.

Задача № 1. Парная регрессия

- 1. Построить диаграмму рассеяния.
- 2. Найти точечные оценки параметров линейной регрессии, записать оценку функции регрессии и построить её график на диаграмме рассеяния вместе с границами 80% х интервалов для предсказаний.
- 3. Найти оценки дисперсий оценок коэффициентов регрессии.
- 4. Найти доверительные интервалы для коэффициентов регрессии с доверительной вероятностью $\gamma = 0.8$ для чётных вариантов и 0.95 для нечётных.
- 5. Проверить гипотезы о равенстве отдельных коэффициентов регрессии нулю (при альтернативе не равно), т.е. рассчитать уровни значимости.
- 6. Найти коэффициент детерминации и на уровне значимости 0.05 проверить значимость линейной функции регрессии.
- 7. Найти точечное и интервальное (с надёжностью 0.9) предсказания зависимой переменной при значении объясняющей переменной, равном максимальному наблюдённому её значению, увеличенному на 10%.
- 8. Найти средний коэффициент эластичности зависимой переменной по независимой.
- 9. По критерию Дёрбина Уотсона проверить гипотезу о автокоррелированности остатков.

Указание: ручные расчёты подтвердить расчётами в Statistica (кроме пунктов 4 и 8).

В вариантах 1-12 исследуется зависимость производительности труда у (т / час) от уровня механизации работ x_1 (%) по данным 14 промышленных предприятий.

Ban. 1

	T													
X														76
V	20	24	28	30	31	33	34	37	38	40	41	43	45	48

Ban 2

\mathbf{x}_1	55	46	40	39	35	29	31	75	68	66	60	54	59	53
У	33	32	30	29	27	23	19	47	44	42	40	39	37	36

	Bap.	. 3												
\mathbf{x}_1	48	57	55	61	56	62	68	70	77	42	41	37	31	33
y	34	35	38	39	41	42	44	46	49	32	31	29	25	21
		!		ļ		!	!			ļ	!	· ·	!	1
	Bap	. 4			•									
\mathbf{x}_1	52	54	45	39	38	34	28	30	74	67	65	59	53	58
y	35	32	31	29	28	26	22	18	46	43	41	39	38	36
	Bap	. 5		•	•									
\mathbf{x}_1	43	49	58	56	62	57	63	69	71	78	34	32	38	42
y	33	35	36	39	40	42	43	45	47	50	22	26	30	32
	Bap.	6												
\mathbf{x}_1	52	57	51	53	44	38	37	33	27	29	73	66	64	58
y	37	35	34	31	30	28	27	25	21	17	45	42	40	38
J												ı		
	Bap.	7												
\mathbf{x}_1	39	43	44	50	59	57	63	58	64	70	72	79	35	33
y	31	33	34	36	37	40	41	43	44	46	48	51	23	27
	Bap.	8												
\mathbf{x}_1	63	57	51	56	50	52	43	37	36	32	26	28	72	65
У	39	37	36	34	33	30	29	27	26	24	20	16	44	41
	Bap.	9		•				•		•		•		
\mathbf{X}_1	64	59	65	71	73	80	36	34	40	44	45	51	60	58
y	42	44	45	47	49	52	24	28	32	34	35	37	38	41
J	12	1 ' '	15	.,	17	32		20	32	٠,	55	5 /	50	1.1
	Bap.	10		-				-						
\mathbf{x}_1	46	52	61	59	65	60	66	72	74	81	37	35	41	45
y	36	38	39	42	43	45	46	48	50	53	25	29	33	35
	Bap.	11												
\mathbf{x}_1	62	30	36	50	41	47	56	54	60	55	61	67	69	66
V	5	2	2	3	3	3	4	3	3	4	4	4	4	4
			ı <i>—</i>	1-	12	10		1-	1-					
-	Bap.	. 12					1		1	1	1	1	1	-1
\mathbf{x}_1	45	46	40	39	35	29	61	75	68	66	60	54	59	53
У	3	2	3	9	7	3	9	7	4	2	6	9	7	6

В вариантах 13 - 30 значения независимой переменной приведены в первой строке таблицы, зависимой — во второй.

	Bap. 13	3												
8	10	15	3	9	13	2	2	13	8	19	3	16	3	16
-16	-20	-30	-7	-20	-25	-3	-2	-20	-13	-35	-3	-29	-4	-33
	Bap. 14	1												
11	12	10	13	3	3	9	1	1	18	17	4	8	12	9
-9	-14	-9	-10	-1	-1	-12	1	1	-21	-20	-4	-6	-12	-9
		_	l	I			I			I	I		I	
	Bap. 15		10	12	0	0	10	12	12	0	2	1.7	1.4	7
13 15	5	8	18 20	13 15	9	9	10 11	13 14	12 20	0	1	17 20	14 15	7
13] 3	0	20	13	11	12	11	14	20	I	1	20	13	/
	Bap. 16	5												
13	8	0	12	11	4	0	1	17	16	13	10	2	14	0
13	7	2	10	8	9	1	2	16	12	13	12	5	13	3
	Bap. 17	7												
7	18	7	7	14	14	4	13	7	2	4	13	13	1	0
8	19	3	11	18	17	3	14	7	3	4	18	13	2	1
	1		I							I	I			
	Bap. 18		1.6	10	10		1.5	1.4		1.5				10
15	3	15	16	12	12	5	15	14	1	17	6	9	3	19
-5	0	-7	-10	-5	-5	-1	-6	-3	1	-7	-4	-1	0	-8
	Bap. 19)												
6	12	19	3	14	15	12	13	11	10	4	9	13	12	15
12	12	20	5	14	18	17	15	12	11	7	9	14	16	17
	Bap. 20)												
16	19	4	7	11	19	7	2	0	15	0	8	9	14	11
49	61	16	23	33	54	22	7	4	46	4	29	31	45	35
17	01	10	23	33	<u> </u>	22	,		10	•	2)		15	33
	Bap. 21	1	1	Г			T	1	1	1	1		T	
7	18	0	8	4	3	10	15	4	15	11	17	10	17	4
22	53	2	24	14	14	31	37	14	40	30	47	27	47	11
	Bap. 22	2												
7	18	19	11	8	9	17	15	11	5	17	6	17	3	17
-2	-3	-3	-2	1	0	0	-1	-1	1	-2	0	-2	0	-2
	D 20	,	ı					ı	ı	·	ı			
	Bap. 23		17	7	12	5	10	11	2	12	7	0	10	10
<u>-6</u>	-20	17 -30	17 -28	-11	13 -27	5 -11	19 -30	11 -18	2 -3	-23	7 -14	9 -19	18 -35	19 -32
-0	-20	-30	-20	-11	-21	-11	-30	-10	-3	-23	-14	-19	-33	-32
	Bap. 24	1												
3	4	4	8	5	7	4	12	7	19	17	19	4	7	5
5	2	6	6	7	7	6	9	5	12	16	14	3	7	6

]	Bap. 25	5												
12	5	8	4	10	0	15	19	18	4	9	8	16	8	14
-17	-3	-8	-4	-16	3	-25	-26	-27	-5	-12	-10	-21	-7	-20
		_												
	Bap. 26		T	Г	Г	Г	Г	T	1		T	1	T	T 1
18	16	2	18	17	19	6	17	8	5	10	15	9	11	6
-29	-24	-4	-28	-26	-23	-9	-20	-8	-5	-12	-15	-12	-19	-6
	D 05	-												
	Bap. 27		1	ı				ı		_	ı	Т	ı	1
0	0	5	14	2	17	4	6	12	19	7	4	11	0	18
0	1	12	35	6	43	11	14	31	49	19	14	29	0	49
]	Bap. 28	}			,	,	,		,					,
3	5	4	12	11	14	14	14	2	7	17	9	13	6	15
-1	-2	-1	-8	0	-8	-7	-9	2	0	-14	-7	-12	-1	-12
]	Bap. 29)			,	,	,		,					,
19	7	8	5	4	12	17	8	19	6	12	17	4	10	11
-34	-14	-11	-10	-5	-22	-33	-17	-34	-8	-22	-29	-5	-18	-23
,	D 60													
	Bap. 30		T	Τ	П	П	Г	T	1		T	1	T	T 1
10	15	14	1	19	12	18	18	9	15	14	7	16	8	1
6	7	11	1	15	11	17	14	7	11	11	8	11	6	3

Задача № 2. Множественная регрессия

- 1. Найти оценку функции множественной линейной регрессии со всеми имеющимися регрессорами. При наличии сильной мультиколлинеарности, возможно придётся уменьшить параметр tolerance в процедуре используемого пакета статистического анализа.
- 2. Указать признаки отягощённости мультиколлинеарностью, обсудить результаты корреляционного анализа регрессоров, применить ридж регрессию с параметром = 0.1.
- 3. Применяя пошаговую регрессию вперёд, ввести в модель два регрессора, обеспечивающих наилучшее описание зависимой переменной и без отягощённости мультиколлинеарностью. Сравнить параметры оценок коэффициентов регрессии, коэффициент детерминации, значимость уравнения в целом с таковыми в п. 1 и 2. Сделать выводы.
- 4. На основании результатов п. 3 найти: а) средние коэффициенты эластичности зависимой переменной по независимым, б) точечное и интервальное (с надёжностью 0.9) предсказания зависимой переменной при

значении важнейшей объясняющей переменной, равном максимальному наблюдённому её значению, увеличенному на 10% и значении второй объясняющей переменной, равном минимальному наблюдённому её значению, уменьшенному на 15%.

Указание: расчёты проводить по бригадно в Statistica (кроме пункта 4 a)).

В вариантах 1-12 исследуется зависимость производительности труда у (т / час) от уровня механизации работ x_1 (%), среднего возраста работников x_2 (лет) и энерговооруженности x_3 (КВт / 100 работающих) по данным 14 промышленных предприятий.

T)	
Ran	
Dau.	

\mathbf{x}_1	32	30	36	40	41	47	56	54	60	55	61	67	69	76
\mathbf{x}_2	33	31	41	39	46	43	34	38	42	35	39	44	40	41
\mathbf{x}_3	30	29	35	40	40	48	50	52	59	54	60	70	70	75
V	20	24	28	30	31	33	34	37	38	40	41	43	45	48

Bap. 2

\mathbf{x}_1	55	46	40	39	35	29	31	75	68	66	60	54	59	53
\mathbf{X}_2	33	42	45	38	40	30.	32	40	39	43	38	34	41	37
\mathbf{X}_3	50	45	39	40	34	30	30	74	69	66	59	54	60	52
У	33	32	30	29	27	23	19	47	44	42	40	39	37	36

Bap. 3

\mathbf{x}_1	48	57	55	61	56	62	68	70	77	42	41	37	31	33
\mathbf{x}_2	44	35	39	43	36	40	45	41	42	47	40	42	32	34
\mathbf{X}_3	47	56	54	62	56	62	67	70	76	42	40	37	30	32
y	34	35	38	39	41	42	44	46	49	32	31	29	25	21

Bap. 4

\mathbf{X}_1	52	54	45	39	38	34	28	30	74	67	65	59	53	58
\mathbf{x}_2	36	32	41	44	37	39	29	31	39	38	42	37	33	40
X 3	52	53	45	38	38	34	28	31	73	66	65	60	52	57
y	35	32	31	29	28	26	22	18	46	43	41	39	38	36

Bap. 5

\mathbf{x}_1	43	49	58	56	62	57	63	69	71	78	34	32	38	42
\mathbf{x}_2	48	45	36	40	44	37	41	46	42	43	35	33	43	41
\mathbf{x}_3	42	48	58	55	61	56	62	70	70	78	35	32	38	41
y	33	35	36	39	40	42	43	45	47	50	22	26	30	32

Bap. 6

	52													
\mathbf{x}_2	32	39	35	31	40	43	36	38	28	30	38	37	41	36

X3	52	56	50	53	45	37	37	32	28	30	72	66	64	59
y	37	35	34	31	30	28	27	25	21	17	45	42	40	38

Bap. 7

\mathbf{x}_1	39	43	44	50	59	57	63	58	64	70	72	79	35	33
\mathbf{x}_2	44	42	49	46	37	41	45	38	42	47	43	44	36	34
\mathbf{X}_3	45	42	50	46	38	40	45	39	41	48	43	44	35	34
y	31	33	34	36	37	40	41	43	44	46	48	51	23	27

Bap. 8

\mathbf{x}_1	63	57	51	56	50	52	43	37	36	32	26	28	72	65
\mathbf{x}_2	40	35	31	38	34	30	39	42	35	37	27	29	37	36
\mathbf{x}_3	39	38	35	35	32	31	28	28	25	25	21	15	45	40
У	39	37	36	34	33	30	29	27	26	24	20	16	44	41

Bap. 9

\mathbf{x}_1	64	59	65	71	73	80	36	34	40	44	45	51	60	58
\mathbf{x}_2	46	39	43	48	44	45	37	35	45	43	50	47	38	42
X ₃	50	40	50	55	50	60	35	34	42	41	48	49	50	50
y	42	44	45	47	49	52	24	28	32	34	35	37	38	41

Bap. 10

\mathbf{x}_1	46	52	61	59	65	60	66	72	74	81	37	35	41	45
\mathbf{x}_2	51	48	39	43	47	40	44	49	45	46	38	36	46	44
X 3	46	52	60	58	64	61	65	72	74	80	38	34	40	44
y	36	38	39	42	43	45	46	48	50	53	25	29	33	35

Bap. 11

\mathbf{x}_1	62	30	36	50	41	47	56	54	60	55	61	67	69	66
\mathbf{x}_2	43	51	41	39	46	43	34	38	42	25	39	44	40	41
\mathbf{X}_3	55	40	38	46	42	45	41	45	50	40	50	55	55	50
V	5	2	2	3	3	3	4	3	3	4	4	4	4	4

Bap. 12

\mathbf{x}_1	45	46	40	39	35	29	61	75	68	66	60	54	59	53
\mathbf{X}_2	63	42	45	38	40	30.	32	40	39	43	38	34	41	37
X 3	62	41	44	38	39	30	31	38	36	45	37	35	40	36
y	3	2	3	9	7	3	9	7	4	2	6	9	7	6

Задача № 3. Введение фиктивных переменных

- 1. Добавить (домыслить) правдоподобную качественную переменную к данным того же варианта задания «Парная регрессия», разбив наблюдения в соответствии с уровнями сопутствующей качественной переменной (2 уровня в нечётных вариантах и 3 в чётных).
- 2. Ввести в модель нужное число дихотомических фиктивных переменных, оценить параметры модели и записать оценки уравнений регрессии для каждого уровня качественной переменной отдельно.
- 3. По данным для какого-либо уровня отдельно оценить уравнение регрессии. Сравнить результаты моделирования с таковыми в п. 2. Сделать выводы.

Указание: расчёты проводить в Statistica.

Задача № 4. Линеаризация

- 1. Подбором нелинейных преобразований исходных переменных в том же варианте задания «Парная регрессия», добиться улучшения представления данных с помощью нелинейной функции регрессии.
- 2. Сравнить коэффициент детерминации и уровень значимости уравнения в целом с таковыми для линейной функции регрессии. Сделать выводы.
- 3. Записать оцененную нелинейную функцию регрессии и построить её график вместе с линейной функцией регрессии на диаграмме рассеяния.
- 4. Найти средний коэффициент эластичности зависимой переменной по независимой в полученной нелинейной модели и сравнить его с таковым в линейной.

Указание: расчёты проводить в Statistica (кроме п. 4).

Задача № 5. Параболическая регрессия

- 1. Найти оценку функции параболической (степени 2) регрессии.
- 2. Построить диаграмму рассеяния и нанести на неё график оцененной регрессии.
- 3. Найти коэффициент детерминации и на уровне значимости 0.05 проверить значимость функции регрессии.

- 4. Найти точечное и интервальное (с надёжностью 0.9) предсказания зависимой переменной при значении объясняющей переменной, равном максимальному наблюдённому её значению, увеличенному на 10%.
- 5. Найти средний коэффициент эластичности зависимой переменной по независимой.
- 6. По критерию Дёрбина Уотсона проверить гипотезу о автокоррелированности остатков.

Указание: расчёты проводить по бригадно в Statistica.

В таблице для каждого варианта указаны наблюдённые значения независимой (первая строка) и зависимой переменной.

Bap 1	14	5	15	11	10	14	14	18	15	7	1	0	15	3	13
	183	-11	186	96	81	156	140	241	155	91	-46	21	216	40	160
			ı		-				<u> </u>	<u> </u>				I	
Bap 2	19	16	16	17	18	18	2	9	0	9	2	4	15	13	15
	54	28	25	15	30	73	27	41	-17	18	40	14	36	28	50
Bap 3	0	5	4	17	-3	1	1	19	17	8	13	18	0	0	8
	-3	-14	-6	56	-3	9	25	70	56	0	35	69	-1	-18	17
D 4		-	_1	٦		4.0			ا			4 -	4.0		
Bap 4	6	6	5 -18	3	1	19	8	3	9	4	5	16	12	0	5 11
	10	-49	-18	-9	25	-65	-20	2	-11	10	4	-66	-30	-8	11
Bap 5	11	2	16	1	15	5	7	9	18	17	19	15	2	15	3
Бар З	-37	-25	-61	9	-53	17	25	31	-49		-112	-67	-6	-33	44
	-31	-23	-01	<u> </u>	-33	1 /	23	31	-47	-70	-112	-07	-0	-55	77
Bap 6	7	16	0	19	9	10	1	14	12	19	1	18	4	12	11
	-34	38	38	-7	23	-12	20	23	2	7	-12	5	5	25	-15
I.						- I	l.								
Bap 7	2	1	7	10	0	1	14	16	1	2	13	5	6	1	16
	8	1	-13	-3	27	11	13	21	5	24	30	21	20	6	38
						T									
Bap 8	16	3	4	1	7	12	15	4	9	3	16	18	11	19	15
	27	-36	54	14	46	55	19	18	9	46	38	59	21	42	44
D 0	1.0	1.7	4	ر ا	2	1.0	1.4	2	1.0	1.1	1.77		1.0	1	0
Bap 9	19 43	17 82	4 8	5 14	-15	12 49	14 37	7	18 62	11 18	17 -1	-10	12 40	10	9 25
	43	82	8	14	-13	49	3/	/	62	18	-1	-10	40	-10	25
Bap															
10	8	1	17	19	12	9	14	5	8	10	2	2	0	13	13
	-16	-24	-61	-144	-56	-33	-61	16	-21	-28	-10	2 12	-22	-27	-47

Bap															
11	4	7	15	2	2	7	9	4	15	4	5	13	17	8	14
	28	23	38	8	4	-3	15	-3	-30	-37	-1	10	33	27	2
Bap															
12	17	18	0	19	16	17	19	0	9	0	1	18	6	8	14
	-56	-30	-2	-69	-75	-72	-62	-24	-1	-25	21	-81	-6	-25	-24
			,					,	,	•	•	•			
Bap															
13	3	15	13	13	8	2	2	18	9	12	12	16	7	10	9
	23	136	51	77	13	28	0	114	44	68	42	126	-17	100	55
Bap															
14	9	11	4	9	8	1	4	8	17	4	4	5	15	9	5
	31	81	11	51	37	4	-3	82	146	29	31	18	115	60	53

Задача № 6. Логит – и пробит - модели

- 1. Подобрать данные с числом факторов не менее 2 и числом наблюдений >= 15.
- 2. Оценить модель с помощью метода максимального правдоподобия, проверить значимость модели.
- 3. Построить 3D график.
- 4. Построить таблицу наблюдённых, предсказанных значений и остатков, указать Odds Ratio.
- 5. Найти средний маржинальный эффект какого-либо фактора.
- 6. Сделать прогноз для нового объекта.

Задача № 7. Временные ряды (моделирование и сезонная декомпозиция)

- 1. Смоделировать не менее 6 периодов сезонности временного ряда. Период сезонности m = 4 для нечётных и 7 для чётных вариантов. Формула: = a + b*V0 + S + (Rnd(1) 0.5)*c. Разумные параметры a, b, c и сезонные эффекты S, подобрать самим.
- 2. Построить график временного ряда и показать его преподавателю.
- 3. Произвести аддитивную декомпозицию полученного ряда, выделив оценки сезонной компоненты и линейного тренда. Сопоставить их с S, a, b.
- 4. По ряду невязок оценить дисперсию ошибок, сопоставив её с параметром с, и сделать точечный и интервальный прогноз (с доверительной вероятностью 0.95) на глубину в 3 временных единицы.
- 5. Изобразить на графике исходный ряд и прогнозные значения с доверительными интервалами.

Указание: расчёты проводить по бригадно в Statistica.

Задача № 8. Временные ряды (ARIMA - моделирование)

- 1. Построить график временного ряда ежемесячных наблюдений чисел авиапассажиров (файл series_G.sta).
- 2. Для устранения мультипликативности эффектов подвергнуть ряд логарифмированию.
- 3. Устранить линейный тренд и сезонную периодичность, применив операторы взятия обратных разностей с лагом в 1 и 12 единиц.
- 4. По графикам автокорреляционной частной автокорреляционной функций принять решение о порядках ARMA модели.
- 5. Подогнать к данным ARMA модель с двумя параметрами движущегося среднего (один регулярный, другой сезонный) и без авторегрессионых параметров.
- 6. Убедиться в значимости оцененных параметров.
- 7. Оценить адекватность модели найдя прогнозные значения для имеющихся наблюдений.
- 8. Сделать точечный и интервальный прогноз чисел авиапассажиров на глубину в период сезонности. Построить график.
- 9. Построить график временного ряда ежегодных наблюдений чисел солнечных пятен (файл sunspot.sta).
- 10. Устранить сезонную периодичность с лагом в 11 единиц.
- 11. Подогнать к данным ARMA модель порядков: p = 2, q = 2.
- 12. Сделать точечный и интервальный прогноз чисел солнечных пятен на 2003 и 2004 годы.

Указание: расчёты проводить по бригадно в Statistica.

Задача № 9. Системы эконометрических уравнений (косвенный МНК)

По данным

Год	Годовое	Оптовая цена	Доход на душу	Расходы по
	потребление	за фунт, долл.,	населения,	переработке
	свинины на	y_2	долл., х ₁	мяса, % к
	душу			цене, х2
	населения,			
	фунтов, у1			
1990	60	5	1300	60
1991	62	4	1300	56
1992	65	4.2	1500	56
1993	62	5	1600	63
1994	66	3.8	1800	50

Построить модель вида

$$\begin{cases} y_1 = a_1 + b_{12} * y_2 + c_{11} * x_1 + e_1 \\ y_2 = a_2 + b_{21} * y_1 + c_{22} * x_2 + e_2 \end{cases}.$$

- 1. Применяя условие размерности установить идентифицируемость каждого уравнения структурной формы.
- 2. Записать приведённую форму уравнений.
- 3. Выразить коэффициенты структурной формы через коэффициенты приведённой формы.
- 4. Косвенным МНК идентифицировать структурную форму модели.

Указание: расчёты проводить по бригадно в Statistica.

Задача № 10. Системы эконометрических уравнений (двух шаговый МНК)

По данным

Год	D	y	С	Год	D	y	С
0		46.7		5	5.9	17.8	25.8
1	-6.8	3.1	7.4	6	44.7	37.2	8.6
2	22.4	22.8	30.4	7	23.1	35.7	30.0
3	-17.3	7.8	1.3	8	51.2	46.6	31.4
4	12	21.4	8.7	9	32.3	56.0	39.1

Построить модель вида

$$\begin{cases} y^{t} = a_{1} + b_{1}*(C^{t} + D^{t}) + e^{t}_{1} \\ C^{t} = a_{2} + b_{2}*y^{t} + b_{3}*y^{t-1} + e^{t}_{2} \end{cases}$$

где: у – валовой национальный доход;

С – личное потребление;

D – конечный спрос (помимо личного потребления).

- 1. Применяя условие размерности проверить, идентифицируемо ли каждое уравнение структурной формы.
- 2. Записать приведённую форму уравнений.
- 3. Двух шаговым МНК идентифицировать первое уравнение структурной формы модели.

Указание: расчёты проводить по бригадно в Statistica.

Библиографический список

- 1. Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998. 1022 с.
- 2. Тюрин Ю. Н., Макаров А. А. Статистический анализ данных на компьютере. М.: Инфра М, 1998. 528 с.
- 3. Доугерти К. Введение в эконометрику. М.: Инфра М, 2001. 402 с.

- 4. Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс. М.: Дело, 2000.-400 с.
- 5. Эконометрика: Учеб. пособие; Под ред. И. И. Елисеевой. М.: Финансы и статистика, 2001. –245 с.
- 6. Практикум по эконометрике: Учеб. пособие; Под ред. И. И. Елисеевой. М.: Финансы и статистика, 2001. 192 с.
- 7. Катышев П. К., Пересецкий А. А. Сборник задач к начальному курсу эконометрики. М.: Дело, 1999. 72с.

ЭКОНОМЕТРИКА

Составитель Бородачёв Сергей Михайлович Редактор издательства И.В. Меркурьева

Подписано в печать Формат 60*84 1/16

Бумага типографская Уч.-изд.л. Тираж

Плоская печать ж Заказ Формат 60*84 1/16 Усл.печ.л. Цена "С"