Задачи по курсу "Выпуклый анализ"

(лектор А.В. Дмитрук)

Выпуклые множества

- 1) Представить единичный замкнутый круг на плоскости в виде пересечения замкнутых полупространств. Выписать их явно.
- 2) Найти ex A для множеств:

$$A = \{ x \in \mathbb{R}^3 \mid x_3 \ge x_1^2 + x_2^2, \ x_1 + x_2 + x_3 \le 1 \},$$
$$A = \{ x \in \mathbb{R}^2 \mid x_2 \ge |x_1|, \ x_1^2 + x_2^2 \le 1 \}.$$

3) Доказать, что множество

$$K = \{x \in \mathbb{R}^3 \mid x_1^2 - 2x_1x_3 + x_2^2 \le 0, \ x_3 \ge 0\}$$

есть выпуклый конус.

- 4) Найти выпуклые оболочки множеств:
 - a) $x^2 + y^2 \le 1$, xy = 0;
 - 6) $x^2 + y^2 = 1$, x y = 0:
 - B) $x^2 + y^2 = 1$, $|x| \le 1$, $|y| \le 1$;
 - Γ) $y \le e^x$, $y \ge |x|$.
- 5) Для произвольного множества A пусть \widetilde{A} состоит из всех отрезков [a,b], у которых концы $a,b\in A$. Верно ли, что $\widetilde{A}=co\,A\,?$
- 6) Пусть Q- неотрицательно определенная $n \times n-$ матрица. Доказать, что $\forall c$ множество $A = \{x \in \mathbb{R}^n \mid (Qx, x) \leq c \}$ выпукло.
- 7) Доказать, что если множество A выпукло, то A+A=2A. Для невыпуклого A построить контрпример.

Более общо: если A выпукло и $\mu, \nu \geq 0$, то $\mu A + \nu A = (\mu + \nu) A$.

- 8) Пусть $K \subset \mathbb{R}^n$ непустой замкнутый выпуклый конус. Тогда следующие четыре свойства эквивалентны:
 - а) K не содержит ни одной прямой (т.е. если $\pm x \in K$, то x = 0),

- б) $int K^*$ непуста,
- в) существует вектор $p \in \mathbb{R}^n$ такой, что $(p,x)>0 \quad \forall \, x \in K, \, x \neq 0.$
- г) существует вектор $p \in \mathbb{R}^n$ и число c>0 такие, что $(p,x) \geq c|x| \quad \forall \, x \in K.$ Такой конус называется ocmpым.
- 9) Пусть $K \subset \mathbb{R}^n$ замкнутый выпуклый конус, $K \cap \mathbb{R}^n_+ = \{0\}$. Тогда $\exists p \in -K^*$, у которого все координаты $p_i > 0$ (вектор цен).
- 10) Пусть $K \subset \mathbb{R}^n$ выпуклый конус. Тогда $K K^* = \mathbb{R}^n$, $K \cap (-K^*) = \{0\}$.
- 11) Пусть A_1 , A_2 выпуклые множества, и $A = A_1 + A_2$. Доказать, что $ex A \subset ex A_1 + ex A_2$, т.е. если $a_0 \in ex A$, то $a_0 = a_1 + a_2$, где $a_1 \in ex A_1$, $a_2 \in ex A_2$. Привести пример, что обратное включение неверно.
- 12) Пусть A- выпуклый компакт, $x\in \mathbb{R}^n$, и пусть a- самая удалённая от x точка в A. Тогда a- выступающая в A.
- 13) Пусть A выпукло, $x_0 \in int A$. Тогда для любого подпространства $L \ni x_0$ имеет место равенство $reint(A \cap L) = (int A) \cap L$. Показать, что условие $x_0 \in int A$ существенно.
- 14) Пусть A выпукло, $int\,A$ непусто, L- подпространство, $\pi-$ проекция на L. Тогда $reint\,\pi(A)=\pi(int\,A)$. Более общо: $reint\,\pi(A)=\pi(reint\,A)$. Еще более общо. Пусть задано аффинное $P:\mathbb{R}^n\to\mathbb{R}^m$, и A- выпуклое множество в \mathbb{R}^n . Тогда $reint\,P(A)=P(reint\,A)$.
- 15^*) Пусть A- связное множество в \mathbb{R}^n . Тогда $co\,A$ состоит из выпуклых комбинаций не более n элементов множества A. Показать, что здесь достаточно требовать, чтобы A имело не более n связных компонент.
- 16) Доказать, что если $A^0 = A$, то $A = B_1(0)$ единичный шар.
- 17) Доказать, что если A открыто, то и co A открыто.
- 17а) Пусть $A_1 \subset A_2 \subset \ldots \subset A_k \subset \ldots$ возрастающая последовательность выпуклых множеств. Будет ли их объединение выпукло?
- 18) Пусть A замкнуто. Будет ли co A замкнуто?
- 19) Пусть A, B замкнуты и выпуклы. Будет ли A + B замкнуто?

- 19b) Пусть A,B замкнутые полиэдральные множества. Доказать, что тогда A+B замкнуто.
- 19а) Пусть K- выпуклый конус, $x\in K,\ y\in int\, K.$ Тогда $x+y\in int\, K.$ Другими словами, $K+int\, K\subset int\, K.$
- 20^*) Пусть A— выпуклый компакт в \mathbb{R}^n . Тогда ex A есть пересечение не более чем счётного числа открытых множеств (т.е. множество типа G_δ).
- 21а) Пусть выпуклые компакты $A_k \stackrel{\mathrm{H}}{\longrightarrow} A$ (по Хаусдорфу), где A компакт. Тогда A выпукло.
- 21) Пусть выпуклые компакты $A_k \xrightarrow{H} A$ (По Хаусдорфу), где A также выпуклый компакт, и $0 \in int\,A$. Тогда $A_k^0 \xrightarrow{H} A^0$.
- 22) Пусть A, B- выпуклые множества. Доказать, что они строго отделимы $\iff \rho(A,B) = \inf \{ |a-b| : a \in A, b \in B \} > 0 \iff 0 \notin \overline{A-B}.$
- 23) Привести пример замкнутого выпуклого множества, проекция которого на некоторое подпространство не замкнута.
- 24) Пусть A- выпуклое замкнутое множество. Доказать, что $ex\,A$ непусто $\Longleftrightarrow A$ не содержит прямых.
- 25^*) Пусть A, B- полиэдры (многогранные множества), и они не пересекаются. Тогда они строго отделимы (даже если они не ограничены).
- 26) Пусть A- выпуклый компакт, $z \notin A$. Тогда $\exists y \in \mathbb{R}^n$ такая, что $\forall x \in A$ выполнено неравенство |x-y| < |z-y|, т.е. $A \subset int B_{|z-y|}(y)$.
- 27^*) Пусть A- выпуклый компакт, $p \neq 0$. Тогда $\forall \, \varepsilon > 0 \, \exists \, p' \in \mathbb{R}^n, \, |p'-p| < \varepsilon$ такой, что $A_{p'} = Argmax\,(p',A)\,$ состоит из одной точки.
- 28) (Поляра линейного прообраза.) Пусть дано линейное отображение $S: \mathbb{R}^m \xrightarrow{\mathrm{Ha}} \mathbb{R}^n$, и выпуклое множество $A \subset \mathbb{R}^n$. Тогда для его прообраза $B = S^{-1}(A)$ справедливо равенство $B^0 = S^* A^0$.
- 29) Пусть A- неограниченное замкнутое выпуклое множество в \mathbb{R}^n . Доказать, что

- а) $\forall x_0 \in A \ \exists h \neq 0$ такой, что $x_0 + \mathbb{R}_+ h \subset A$;
- б) если $x_0 + \mathbb{R}_+ h \subset A$, то и $\forall x \in A$ будет $x + \mathbb{R}_+ h \subset A$ (такой вектор h называется рецессивным направлением);
- в) множество всех рецессивных направлений, обозначаемое Rec(A), есть замкнутый выпуклый конус.
- 30^*) Теорема Дубовицкого-Милютина для выпуклых множеств. Пусть $A_1, \ldots, A_m,$ $A_{m+1}-$ выпуклые множества, из которых первые m открыты. Тогда $A_1\cap\ldots A_m\cap A_{m+1}=\emptyset\iff$ существует нетривиальный набор векторов $p_i\in\mathbb{R}^n$ такой, что

$$\sum_{1}^{m+1} p_i = 0, \qquad \sum_{1}^{m+1} \inf(p_i, A_i) \ge 0.$$

- 31^*) Пусть A замкнутое множество в \mathbb{R}^n , и $\forall x \in \mathbb{R}^n$ имеется единственная ближайшая точка в A (относительно евклидовой нормы). Тогда A выпукло. Показать, что для нормы $||x||_{\infty} = \max |x_i|$ это неверно.
- 32^*) Множество A называется локально выпуклым, если для любой точки $x \in A$ существует её окрестность U_x такая, что $U_x \cap A$ выпукло.

Доказать, что замкнутое связное локально выпуклое множество выпукло.

- 33) Пусть a_1, \ldots, a_k различные точки в \mathbb{R}^n , и $M = co\{a_1, \ldots, a_k\}$. Точку a_i назовём *существенной*, если $co\{a_j, j \neq i\} \neq M$. Доказать, что a_i крайняя в $M \iff$ она существенная.
- 34) Пусть A компакт в \mathbb{R}^n , $0 \notin A$. Доказать, что $con A \cup \{0\} = \bigcup_{\alpha \geq 0} \alpha A$ замкнутый конус. Показать, что оба условия здесь существенны.
- 34a) Множество A называется строго выпуклым, если его граница не содержит отрезков. Другими словами, если $x, y \in \partial A, x \neq y$, то $\frac{1}{2}(x+y) \in int A$.)

Пусть A выпукло и замкнуто. Доказать, что тогда: A строго выпукло \iff $ex\ A=\partial A\iff S(A)=\partial A.$

- 34b) Пусть A выпуклый компакт, а V_R есть пересечение всех шаров радиуса $\leq R$, содержащих A. Доказать, что V_R строго выпукло и $h(V_R,A) \to 0$ при $R \to \infty$.
- 34c) Пусть A выпуклый телесный компакт. Доказать, что $\forall \varepsilon > 0$ найдется многогранник $M_{\varepsilon} \supset A$ такой, что $h(M_{\varepsilon}, A) < \varepsilon$.
- 35) Найти касательный конус и конус внешних нормалей к множеству:

$$A = \left\{ (x,y) \in \mathbb{R}^2 \, | \, \, x^2 + (y-1)^2 \le 1, \, \, y-2x \le 0 \right\} \qquad \text{в точке} \quad (0,0).$$

36) Найти поляру к полиэдру на плоскости:

$$\{-3x_1 + 2x_2 \le 7, \quad x_1 + 5x_2 \le 9, \quad x_1 - x_2 \le 3, \quad -x_2 \le 1\}.$$

- 37) Пусть K- конус в \mathbb{R}^n_+ . Доказать, что он выпуклый \iff множество $\{x\in K\mid \sum x_i=1\}$ выпукло.
- 38^*) Пусть множество A замкнуто, и обладает свойством: $\forall x \in \mathbb{R}^n \ \exists \, r > 0$ такое, что $A \cap B_r(x)$ непусто и выпукло. (В отличие от задачи 32, требования связности A здесь нет.) Доказать, что A выпукло.
- 39) Пусть A- выпуклое в \mathbb{R}^n . Доказать, что A компакт \iff для любой прямой l множество $A\cap l-$ компакт. Показать, что выпуклость A здесь существенна.
- 40) Пусть множество A таково, что $\forall x,y\in A$ точка $\frac{1}{2}(x+y)\in A$. Будет ли A выпукло?
- 40a) Пусть A = co M, L = Aff M. Тогда L = Aff A.
- 41) Пусть A- выпуклое замкнутое множество, имеющее одну крайнюю точку 0. Доказать, что это выпуклый замкнутый конус с вершиной в 0.
- 42) Найти рецессивный конус для множеств в \mathbb{R}^3 :

a)
$$x + y + z \ge 1$$
, 6) $x^2 + y^2 \le 1$,

$$B) \left\{ \begin{array}{l} -x - y - 2z \leq 0 \\ -x + y \leq 0 \\ -y - z \leq 2 \\ -x + 2y + z \leq 2 \end{array} \right. \qquad \Gamma) \left\{ \begin{array}{l} -1 \leq -x + y \leq 3 \\ x + y + 2z \geq 0 \\ x + z \geq -1 \end{array} \right.$$

- 43) Найти наименьший выпуклый конус, содержащий множества в \mathbb{R}^2 :
 - a) $y = x^2$
 - 6) $y = x^2, x \ge 0$
 - B) $y = x^2 + x, \ x \ge 0$
 - $\Gamma) \quad xy = 1, \quad x > 0$
 - д) $y = \sin x$, $0 \le x \le \pi$
 - e) $y = e^x$.
- 44) Пусть A выпуклое множество. Тогда $K = \{\alpha x \mid \alpha > 0, x \in A \}$ есть наименьший выпуклый конус, содержащий A.

- 45^*) Пусть A- замкнутое выпуклое множество. Доказать, что A строго выпукло $\iff \forall x \in \partial A$ любая опорная гиперплоскость H в точке x к множеству A пересекается с A только по точке $x : H \cap A = \{x\}$.
- 46) Пусть A- замкнутое выпуклое в \mathbb{R}^n , причём его дополнение также выпукло. Доказать, что тогда A- полупространство.
- 47) Пусть A, B- замкнутые выпуклые множества, причём $A \cap B = \emptyset$. Следует ли отсюда, что $\exists p$ такой, что (p, x) < (p, y) $\forall x \in A, y \in B$?
- 48) Пусть A_1 , A_2 замкнутые выпуклые множества, C ограниченное множество, и выполнено равенство $A_1 + C = A_2 + C$. Тогда $A_1 = A_2$ (т.е. можно сокращать обе части равенства на одно и то же множество).
- 49) Пусть A выпуклый компакт в \mathbb{R}^n , $dim\ A=m$. Доказать, что A имеет не менее m+1 крайних точек.
- 49а) Пусть A выпуклое множество, $0 \in A$. Доказать, что 0 крайняя точка в $A \iff A \cap (-A) = \{0\}$.
- 50) Пусть A произвольное множество в \mathbb{R}^n . Доказать, что множество всех $p \in \mathbb{R}^n$, таких что $\sup(p, A) < +\infty$, есть выпуклый замкнутый конус. Он называется барьерным конусом множества A (обозначим его Bar A).
- 51а) Пусть аффинная оболочка точек x_1, \ldots, x_k есть все пространство \mathbb{R}^n . Тогда для любых $\alpha_1 > 0, \ldots, \alpha_k > 0$ точка $\sum \alpha_i x_i \in int \ co \{x_1, \ldots, x_k\}$.
- 51) Пусть A выпуклое множество, $x_k \in A$, $\alpha_k > 0$, $k = 1, 2, \ldots, ;$ $\sum_1^\infty \alpha_k = 1$, и ряд $z = \sum \alpha_k x_k$ сходится. Доказать, что тогда $z \in A$ (т.е. можно брать выпуклые комбинации бесконечного числа элементов A).
- 52) Доказать, что образ многогранного множества (выпуклого многогранника, многогранного конуса) при линейном отображении также является многогранным множеством (выпуклым многогранником, многогранным конусом)
- 53) Пусть A_1, \ldots, A_m выпуклые множества в \mathbb{R}^n . Доказать, что $co\left(\bigcup_{1}^m A_i\right) = \{x \in \mathbb{R}^n \, | \, x = \sum_{1}^m \alpha_i x_i, \ x_i \in A_i, \ \alpha_i \geq 0, \ i = 1, \ldots, m; \ \sum_{1}^m \alpha_i = 1 \}.$
- 54) Точки $x^1, \dots, x^m \in \mathbb{R}^n$ называются аффинно зависимыми, если \exists числа

 $\lambda_1, \dots, \lambda_m$, не все = 0, такие, что: $\sum_1^m \lambda_i x^i = 0$, $\sum_1^m \lambda_i = 0$. В противном случае точки называются аффинно независимыми.

Доказать, что следующие свойства эквивалентны:

- а) точки x^1, \ldots, x^m аффинно независимы.
- б) точки $(x^2 x^1), \dots, (x^m x^1)$ линейно независимы.
- в) точки $(x^1, 1), \ldots, (x^m, 1)$ линейно независимы.
- 55) Найти размерность выпуклого множества $A \in \mathbb{R}^3$, задаваемого следующими ограничениями:

- 56) Доказать, что если множество $A \subset \mathbb{R}$ таково, что A+A=A, то $0 \in \overline{A}$. (Верно ли это в \mathbb{R}^n ?)
- 57) Пусть A- выпуклое множество. Доказать, что $\forall x\in A,\ \forall\,\varepsilon>0$ $\dim\left(B_{\varepsilon}(x)\cap A\right)\ =\ \dim A\ .$
- 57а) Пусть A выпуклый конус, содержащий 0. Тогда минимальное линейное подпространство, содержащее K, есть K K = Aff K, а максимальное линейное подпространство, содержащееся в K, есть $K \cap (-K)$.
- 58) Пусть A- непусто, выпукло и ограничено. Доказать, что $\mathbb{R}^n \setminus A$ не выпукло.
- 59) Доказать, что полиэдральное можество может иметь лишь конечное число крайних точек. Может ли оно не иметь ни одной крайней точки?
- 59a) Доказать, что пересечение конечного числа замкнутых полупространств ограничено (т.е. многогранник) \iff выпуклая оболочка их внешних нормалей содержит ноль в качестве внутренней точки.
- 59b) Пусть A_1 , A_2 непустые выпуклые компакты, пересечение которых пусто. Тогда найдутся полиэдральные множества $M_1 \supset A_1$ и $M_2 \supset A_2$, пересечение кото-

рых также пусто. Это же верно для любого конечного числа попарно непересекающихся компактов.

- 60) Найти поляру следующих множеств на плоскости:
 - а) угла $x \ge 0, y \ge 0, y \le kx (k > 0);$
 - б) круга $x^2 + (y-1)^2 \le 1$;
 - в) круга $x^2 + (y \frac{1}{2})^2 \le 1$;
 - г) квадрата $|x| \le 1, |y| \le 1$;
 - д) прямоугольника $|x| \le 1, \ |y| \le \frac{1}{2}$;
 - е) надграфика гиперболы $y^2 \ge x^2 + 1, \quad y > 0$;
 - ж) надграфика гиперболы $y^2 \ge 2x^2 + 1$, y > 0;
 - з) надграфика гиперболы $y^2 \ge x^2 + 2$, y > 0;
 - и) надграфика гиперболы $xy \ge 1, x > 0, y > 0$;
 - к) надграфика параболы $y \ge x^2 + c$ (для случаев c < 0, c = 0, c > 0);
 - л) полукруга $x^2 + y^2 \le 1$, $y \ge 0$;
 - м) четверти круга $x^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$;
 - н) множества $|x|^{\alpha} + |y|^{\alpha} \le \alpha$, $(\alpha > 1)$.
- 60а) Найти поляру полупространства $(a, x) \leq b \quad (a \in \mathbb{R}^n, \ b \geq 0).$
- 61) Найти конус касательных направлений в точке (0,0) к множеству A на плоскости:
 - a) $-1 \le x_1 \le 1$, $x_2 \le \sqrt[3]{x_1}$, $x_2 \ge x_1$;
 - б) $x_2 \ge x_1^2$; в) $x_2 = -x_1^3$;
 - г) $A = A_1 \cup A_2$, где $A_1 = \{x_1 \ge 0, x_2 \ge x_1^2\}$, $A_2 = \{x_1 < 0, -2x_1 < 3x_2 < -x_1\}$;
 - д) A есть график функции $y = x \sin \frac{1}{x}$.
- 62) Пусть Q— непустой выпуклый компакт в \mathbb{R}^n и L— линейное подпространство. Рассмотрим многозначное отображение $F(x) = Q \cap (x+L)$. Пусть $dom F = \{x \mid F(x) \mid \text{непусто} \}$. Показать, что
- а) если $\dim L = n 1$ (т.е. L есть гиперплоскость), то F(x) непрерывно по Хаусдорфу зависит от $x \in \dim F$; б) в общем случае это неверно.
- 63) Пусть K_1, K_2 замкнутые выпуклые конусы, $K_1 \cap (-K_2) = \{0\}$. Тогда конус $K_1 + K_2$ замкнут.

- 64) Пусть $0 \in A \subset \mathbb{R}^n$. Доказать, что $K_A(0) = \overline{\bigcup_{\lambda>0} \lambda A}$.
- 65) Пусть D есть круг $x^2+y^2\leq 1$ в пространстве \mathbb{R}^3 , а I отрезок $[(0,0,-1),\,(0,0,1)]$. Как выглядит их выпуклая комбинация с коэффициентами $\alpha,\,\beta$?
- 66) Пусть A выпуклое замкнутое множество. Доказать, что его барьерный и рецессивный конусы являются взаимно двойственными: $Bar A = (Rec \, A)^0$.
- 67*) Пусть A выпуклый телесный компакт. Точка $x \in \partial A$ наз. угловой, если $int\ N_A(x)$ непусто, или, эквивалентно, если конус $K_A(x)$ острый. Доказать, что множество угловых точек не более чем счетно. Могут ли угловые точки быть всюду плотными на ∂A ?
- 68) Пусть A выпуклый телесный компакт. Доказать, что для любых двух точек $x \neq y$ из ∂A выполнено $int N_A(x) \cap int N_A(y) = \emptyset$.
- 69) Доказать, что касательный конус к любому множеству всегда замкнут.
- 70) Пусть A- компакт, K- замкнутый выпуклый конус. Доказать, что $Rec\left(A+K\right)=\ K.$
- 71) (Конус неотрицательных полиномов). Пусть множество $K \subset \mathbb{R}^n$ состоит из всех $a = (a_0, a_1, \ldots, a_{n-1})$, для которых полином $P(a,t) = a_0 + a_1t + \ldots + a_{n-1}t^{n-1} \geq 0$ для всех $t \in [0,1]$. Доказать, что K выпуклый замкнутый острый конус, а его внутренность состоит из всех a, для которых $P(a,t) > 0 \quad \forall t \in [0,1]$.

Доказать, что K^* состоит из всех функционалов l вида

$$(l,a) = \int_0^1 P(a,t) d\mu(t),$$

- где $\mu(t)$ произвольная неубывающая функция, а интеграл понимается в смысле Римана—Стилтьеса. (Фактически, это вариант леммы Фаркаша.)
- 72) (Конус будущего). Пусть множество $K \subset \mathbb{R}^{n+1}$ с элементами (x,t) задано неравенствами $(x,x) \leq t^2, \quad t \geq 0$. Доказать, что K выпуклый замкнутый острый конус.
- 73) Пусть множество $A \subset \mathbb{R}^n$ задано неравенствами $(Sx,x) \leq (a,x)^2, \quad (a,x) \geq 0$, где $S \geq 0$ произвольная симметричная матрица, $a \in \mathbb{R}^n$ произвольный вектор. Доказать, что K выпуклый замкнутый конус. Всегда ли он будет острым?

74) Пусть A — выпуклое замкнутое множество. Тогда $\forall x \in A$

$$Rec A = \bigcap_{\varepsilon > 0} \varepsilon (A - x) .$$

75*) Пусть A — выпуклый замкнутый компакт, точки $x_i \in \partial A$, ненулевые векторы $p_i \in N_A(x_i), \quad i=1,\ldots,N.$ Построим полиэдр $P=\{x \mid p_i(x-x_i) \leq 0, \quad i=1,\ldots,N.$ Ясно, что $P\supset A$.

Доказать, что $\forall \varepsilon > 0 \quad \exists \delta > 0$ такое, что $\forall N, \quad \forall x_i \in \partial A, \quad i = 1, \dots, N,$ образующих $\delta-$ сеть на ∂A , выполнено $h(P,A) < \varepsilon$.

76) Пусть конус $K \subset \mathbb{R}^n$ задан неравенствами $x_1 \geq x_2 \geq \ldots \geq x_n \geq 0$. Найти K^* . Указание: воспользоваться формулой

$$(x,y) = (x_1 - x_2)y_1 + (x_2 - x_3)(y_1 + y_2) + (x_3 - x_4)(y_1 + y_2 + y_3) + \dots$$
$$\dots + (x_{n-1} - x_n)(y_1 + \dots + y_{n-1}) + x_n(y_1 + \dots + y_n).$$

77*) Пусть конус $K \subset \mathbb{R}^{n \times n}$ есть конус симметричных неотрицательно определенных матриц. Найти K^* .

Выпуклые функции

1) Найти все опорные аффинные функции к функциям:

$$f = e^x; \quad \frac{1}{x}$$
 Ha $(0, \infty); \quad x^2; \quad \sqrt{1 + x^2}.$

- 2) Пусть f и -f выпуклы и собственны на \mathbb{R}^n . Тогда f аффинна и конечна на всём \mathbb{R}^n .
- 3^*) Доказать с помощью теоремы об отделимости, что если f выпуклая функция $D \longrightarrow \mathbb{R}, \quad x_0 \in int \, D, \quad \text{то } \partial f(x_0)$ непусто.
- 4) Будет ли выпуклой функция:

$$f(x) = \frac{x^2}{|x|+1} : \mathbb{R} \longrightarrow \mathbb{R} ?$$

5) Будет ли выпуклой функция: $f:[0,\infty)\longrightarrow \mathbb{R},$

$$f(x) = \inf \{ z_1^2 + z_2^2 \mid z_1 + z_2 = x \}$$
 ?

- 6) Доказать, что если выпуклая функция $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ ограничена, то $f \equiv \text{const}$.
- 7) Пусть A- замкнутое множество в \mathbb{R}^n . Доказать, что функция расстояния $\rho(x,A)$ выпукла на $\mathbb{R}^n \iff A-$ выпукло.
- 8) Найти сопряжённые функции к:

a)
$$f = \begin{cases} -\sqrt{1 - x^2}, & |x| < 1 \\ +\infty, & |x| \ge 1 \end{cases}$$

б)
$$f = |x| + |x - a|$$

B)
$$f = \begin{cases} \sqrt{1+x^2}, & |x| < 1 \\ +\infty, & |x| \ge 1 \end{cases}$$

$$\Gamma f = \begin{cases} x \ln x, & x > 0 \\ +\infty, & x \le 0 \end{cases}$$

д)
$$f = a\sqrt{1+x^2}$$

e)
$$f = \begin{cases} x^a/a, & x \ge 0 \\ 0, & |x| < 0 \end{cases}$$
 $(a > 1)$

Будут ли данные f замкнутыми?

- 9) Найти субдифференциал функции $f(x,y)=x^2+xy+y^2+3|x+y-2|$ в точках (1,0) и (1,1).
- 10^*) Пусть D-выпуклое множество, $f:D\longrightarrow \mathbb{R}$ удовлетворяет условию: $\forall\,x,y\in D\quad f(\frac{x+y}{2})\leq \frac{1}{2}(f(x)+f(y)).$ Будет ли $\,f\,$ выпукла ?
- 11) Пусть выпуклое множество $A \ni 0$. Доказать, что функция Минковского $\mu_A(x) = \inf \{r > 0 \mid x \in rA \}$ выпукла.
- 12) При каких p,q функция $f=x^py^q$ будет выпуклой (вогнутой) на $int \mathbb{R}^2_+$? (То же для $f=x^py^qz^r$ на $int \mathbb{R}^3_+$).
- 13) Доказать, что функция Кобба-Дугласа

$$f(x_1, \dots, x_n) = x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n} : \mathbb{R}_+^n \longrightarrow \mathbb{R},$$

где все $\alpha_i > 0, \quad \sum \alpha_i = 1, \quad$ выпукла вверх (т.е. вогнута) и положительно однородна. Будет ли она вогнутой, если $\quad \sum \alpha_i < 1$?

14*) Функция f называется строго выпуклой на D, если $\forall x,y \in D, \ \forall \alpha \in (0,1)$ неравенство Йенсена выполняется строго: $f(\alpha x + (1 - \alpha y) < \alpha f(x) + (1 - \alpha)f(y)$.

Пусть f строго выпукла на \mathbb{R}^n , и достигает своего минимума. Доказать, что тогда $f(x) \longrightarrow \infty+$ при $|x| \to \infty.$

- 15^*) Пусть $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ выпукла, и множество M_0 е,, точек минимума непусто и ограничено. Тогда $f(x) \longrightarrow +\infty$ при $|x| \longrightarrow \infty$.
- 16^*) Пусть A- выпуклое замкнутое множество в \mathbb{R}^n . Рассмотрим функцию $f(x)=\rho(x,A)-$ расстояние от точки x до A. Доказать, что она дифференциируема в любой точке $x \notin A$.

Показать, что если расстояние между точками ||x-y|| не евклидово, а есть $\max |x_i-y_i|$, то указанное свойство перестаёт быть верным.

17) Функция называется квазивыпуклой, если $\forall c$ е,, множество подуровня $L_c = \{x \mid f(x) \leq c\}$ выпукло. Доказать, что f квазивыпукла $\iff \forall x, y \in \mathbb{R}^n, \ \forall \alpha, \beta \geq 0, \ \alpha + \beta = 1$, выполнено неравенство $f(\alpha x + \beta y) \leq \max[f(x), f(y)]$.

- 18) Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ такова, что $\forall x, y \in \mathbb{R}^n$ справедливо неравенство $f(\frac{x+y}{2}) \le \frac{1}{2} (f(x) + f(y))$). Будет ли f выпуклой?
- 19) Пусть f выпукла на открытом выпуклом множестве D . Тогда она дифференциируема в точке $x_0 \in D \iff$ она имеет частные производные $\frac{\partial f}{\partial x_i}(x_0), i = 1, \dots, n.$
- 20^*) Пусть $\,f:\,\mathbb{R}_+\,\longrightarrow\,\mathbb{R}_+\,$ выпукла, $\,f(0)\,=\,0.\,$ Доказать, что тогда функция $g(x,y)=f(\sqrt{x^2+y^2}):\mathbb{R}^2\longrightarrow\mathbb{R}$ тоже выпукла.
- 21) Пусть $f,g:\mathbb{R}^n\longrightarrow\mathbb{R}\cup\{+\infty\}$ собственные выпуклые функции. Доказать, что тогда функция

$$(f \oplus g)(x) = \inf \{ f(x_1) + g(x_2) | x_1 + x_2 = x \}$$

(называемая конволюцией этих функций) также будет выпуклой. Будет ли она собственной?

22) Пусть f определена и выпукла на выпуклом множестве A; пусть точки $x_i \in A$, числа $\alpha_i \geq 0$, $\sum \alpha_i = 1$, и ряд $\sum \alpha_i x_i$ сходится. Верно ли, что

$$f\left(\sum_{1}^{\infty}\alpha_{i}x_{i}\right) \leq \sum_{1}^{\infty}\alpha_{i}f(x_{i})$$
?

- 23) При каких значениях параметра α будут выпуклыми функции:

 - a) $f = \alpha x^2 y^2 + (x+y)^4$, 6) $f = \alpha x^2 y^2 + (x^2 + y^2)^2$?
- 24) На плоскости найти области, в которых функция $f = e^{xy}$ является выпуклой (вогнутой).
- 25) Пусть $f:A\longrightarrow \mathbb{R}$ произвольная функция на выпуклом множестве A. Расмотрим функцию $(cof)(x) = \inf \sum \alpha_i f(x_i)$, где inf берётся по всевозможным конечным наборам $x_i \in A$, $\alpha_i \geq 0$, $\sum \alpha_i = 1$ таким что $\sum \alpha_i x_i = x$. Доказать, что $\cos f$ есть верхняя грань всех выпуклых функций $\varphi: A \longrightarrow \mathbb{R}$, таких что $\varphi \leq f$.
- 26) Пусть A, B- выпуклые замкнутые множества в \mathbb{R}^n , а $\varphi_A(x), \varphi_B(x)-$ их опорные функции. Доказать, что $\varphi_{A\cap B}(x)=\inf\{\varphi_A(x_1)+\varphi_B(x_2)\}$, где inf берётся по всем $x_1 + x_2 = x$, т.е. $\varphi_{A \cap B}(x) = (\varphi_A \oplus \varphi_B)(x)$ (см. предыдущую задачу).
- 27) Будет ли выпуклой функция: $f(x) = x \ln x + (1-x) \ln(1-x)$ (0 < x < 1)?
- 28) Пусть f— выпуклая функция на открытом множестве D, точка $x_0 \in D$, вектор $p \in \mathbb{R}^n$. Доказать, что следующие три условия эквивалентны:

- a) $p_0 \in \partial f(x_0)$,
- 6) $x_0 \in \partial f^*(p_0)$,
- B) $(p_0, x_0) = f(x_0) + f^*(p_0)$.
- 29^*) Пусть f- выпукла на открытом выпуклом множестве D. Тогда $\partial f(x)$ есть полунепрерывное сверху многозначное отображение из D в \mathbb{R}^n с выпуклыми компактными значениями, и оно локально ограничено, т.е. $\forall x \in D$ существует окрестность U(x) и шар $B \subset \mathbb{R}^n$ такие, что $\forall x' \in U(x)$ выполнено включение $\partial f(x') \subset B$.
- 30) Пусть f(x) квазивыпукла. Верно ли, что \exists монотонно неубывающая $g: \mathbb{R} \longrightarrow \mathbb{R}$ такая, что g(f(x)) выпукла ?

Или: что существуют выпуклая функция $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}$ и монотонная $h: \mathbb{R} \longrightarrow \mathbb{R}$, такие что $f(x) = h(\varphi(x))$?

31) Вычислить $\partial f(0)$ для функций:

$$f(x) = \max(x, 0);$$
 $f(x) = \max(e^x, 1 - x)$
 $f(x_1, \dots, x_n) = \sum |x_i|;$
 $f(x_1, \dots, x_n) = \max |x_i|;$
 $f(x) = \max x_i;$ $f(x) = \max\{0, (a, x)\}, a \in \mathbb{R}^n.$

32) Каким должно быть множество A, чтобы сублинейный функционал $\varphi(x) = \sup\{(a,x) \mid a \in A\}$ был монотонно неубывающим в том смысле, что если $x_2 \geq x_1$ (т.е. $x_2 - x_1 \in \mathbb{R}^n_+$), то $\varphi(x_2) \geq \varphi(x_1)$?

Доказать, что для этого необходимо и достаточно, чтобы $A \subset \mathbb{R}^n_+$.

33) Рассмотрим функцию $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$,

$$F(y_1, y_2) = y_1 + y_2 + \sqrt{y_1^2 + y_2^2 - 2\alpha y_1 y_2}.$$

Доказать, что при $|\alpha| \le 1$ она выпукла и монотонно неубывает.

- 34) Пусть f выпуклая функция, $x_0 \in dom f$. Доказать, что вектор p есть субградиент к f в точке $x_0 \iff$ гиперплоскость $y y_0 = p(x x_0)$, где $y_0 = f(x_0)$, опорна к epi f в точке (x_0, y_0) .
- 35) Пусть f,g выпуклые функции на \mathbb{R}^n , A выпуклое множество. Рассмотрим функцию $\varphi(z)=\inf\{f(x)\,|\,x\in A,\ g(x)\leq z\}$. Доказать, что φ выпукла и невозрастает: $z_1\leq z_2\implies \varphi(z_1)\geq \varphi(z_2)$.

- 36) Пусть дана симметричная матрица $Q \ge 0$. Доказать, что функция $\varphi(x) = \sqrt{(Qx,x)}$ выпукла. Другими словами, если дана неотрицательная квадратичная форма q(x) = (Qx,x), то функция $\varphi(x) = \sqrt{q(x)}$ выпукла.
- 37) Пусть $f: \mathbb{R}^n \longrightarrow \mathbb{R}, \quad g: \mathbb{R}^n \longrightarrow \mathbb{R}$ выпуклые функции, $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ выпукла и монотонна в том смысле, что если $(x',y') \leq (x'',y'')$, то $\varphi(x',y') \leq \varphi(x'',y'')$. Тогда функция $h(x) = \varphi(f(x),g(x))$ выпукла.
- 38) Пусть квадратичная функция $q(x) = \frac{1}{2}(Qx,x) + (a,x) + b$ выпукла на аффинном подпространстве L. Тогда она выпукла на любом аффинном подпространстве \widetilde{L} , параллельном L.
- 39) Пусть квадратичная функция q(x) выпукла на некотором выпуклом множестве A. Тогда она выпукла на подпространстве $L = Aff\,A$.
- 40) Пусть $g: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ аффинное отображение, и $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ выпуклая функция. Доказать, что сложная функция $\varphi(x) = f(g(x))$ аргумента $x \in \mathbb{R}^m$ выпукла.
- 41) Пусть $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ выпуклая функция, $h: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ аффинное отображение. Доказать, что функция $\mu(y) = \inf \left\{ f(x) \mid h(x) = y \right\}$ выпукла.
- 42) Пусть A- непустой выпуклый компакт, $f:A\longrightarrow \mathbb{R}-$ выпуклая функция, непрерывная на A. Доказать, что $Argmax\,f$ содержит хотя бы одну крайнюю точку множества A.
- 43) Пусть A,C- выпуклые компакты, и $\exists\, r>0$ такое, что $\varphi_A(x)+r|x|\leq \varphi_C(x)$ $\forall\, x\in\mathbb{R}^n$. Доказать, что тогда $A+B_r(0)\subset C$.
- 44) Пусть A выпуклый телесный компакт, $\Omega = \mathbb{R}^n \setminus A$. Тогда функция $\rho(x,A)$ $\lambda \rho(x,\Omega)$ выпукла $\forall \lambda \leq 1$ и не выпукла $\forall \lambda > 1$.

Выпуклые задачи

1) Найти все точки локального минимума функции

$$f(x,y) = 2x^2 + xy + y^2 + 3|x + y - 3|.$$

2) В задаче

$$\begin{cases} (x_1 - 4)^2 + (x_2 - 3)^2 \longrightarrow min \\ x_1^2 \le x_2, & x_2 \le 4 \end{cases}$$
 $(x \in \mathbb{R}^2)$

исследовать на минимум точку (2,4) с помощью теоремы Куна-Таккера.

- 3) Найти минимум функции $f(x)=\frac{1}{2}(x+a)^2+|x|,$ при $x\in\mathbb{R},\ x\in\mathbb{R}^2$.
- 4) На плоскости даны три точки. Найти точку, для которой сумма расстояний до этих тр,х минимальна.
- 5) Найти минимум функции $f(x,y) = x^2 + y^2 + 2 \max(x,y)$.
- 6) Найти расстояние от точки (a_1, a_2, a_3) до конуса $x_3 \ge \sqrt{x_1^2 + x_2^2}$.
- 7^*) Среди полиномов вида $t^2+x_1t+x_2$ найти полином, имеющий наименьшую норму в пространстве C[-1,1].
- 8) Решить выпуклые задачи:

a)
$$f(x,y) = x^2 - xy + y^2 + 3|x - y - 2| \longrightarrow \min;$$

6)
$$f(x,y) = x^2 + y^2 + 4 \max(x,y) \longrightarrow \min;$$

B)
$$f(x,y) = x^2 + y^2 + 2\sqrt{(x-a)^2 + (y-b)^2} \longrightarrow \min;$$

$$\Gamma) \ f(x,y) = x^2 + y^2 + 2\alpha |x+y-1| \longrightarrow \min, \ (\alpha > 0).$$

- 9*) Пусть f выпуклая функция на выпуклом множестве A, причём f дифференцируема в некоторой окрестности множества A, и пусть $\inf f(A) > -\infty$. Тогда последовательность $x_k \in A$ минимизирующая для f на $A \iff \forall x \in A$ $\underline{\lim} (f'(x_k), x x_k) \geq 0$.
- 10) Найти ближайшую точку от y = (1,0,2) до множества

$$A = \{ x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 \le 1, \ x_2 \ge x_1^2 \}.$$