Оценки параметров почти всех функций

Оценки длины сокращённой и кратчайшей д.н.ф. для почти всех функций

Оценки максимальных значений параметров функций алгебры логики, приведённые ранее, показывают, что существуют весьма «плохие» функции, в том смысле, что процесс их минимизации связан с существенными вычислительными трудностями. Интерес представляет вопрос о том, насколько эти трудности типичны. Оценки параметров для почти всех функций, приводимые ниже, показывают, что основные трудности решения задачи минимизации сохраняются.

Определение. Пусть $p_n(Q)$ — число функций $f \in P_n$, обладающих свойством Q. Говорят, что почти все функции алгебры логики обладают свойством Q, если $\lim_{n\to\infty} p_n(Q)2^{-2^n}=1$.

При оценке параметров почти всех функций существенную роль будут играть леммы о средних значениях и неравенства типа неравенства Чебышёва.

Пусть $\mathcal{A} = \{a_1, a_2, \dots, a_s\}$ — конечное множество, а φ — функция, ставящая в соответствие каждому $a \in \mathcal{A}$ неотрицательное число $\varphi(a)$. Будем обозначать через $\overline{\varphi} = \overline{\varphi}(\mathcal{A})$ число $\frac{1}{s} \sum_{a \in \mathcal{A}} \varphi(a)$ — среднее значение функции φ на множестве \mathcal{A} , а через $D\varphi$ — число $\frac{1}{s} \sum_{a \in \mathcal{A}} (\varphi(a) - \overline{\varphi})^2$ — среднее квадратическое отклонение или дисперсию функции φ .

Лемма 1. Пусть $\theta > 0$ и δ_{θ} — доля тех $a \in \mathcal{A}$, для которых $\varphi(a) \geqslant \theta \overline{\varphi}$. Тогда $\delta_{\theta} \leqslant \frac{1}{\theta}$.

Доказательство.

$$\overline{\varphi} = \frac{1}{s} \sum_{a \in \mathcal{A}} \varphi(a) \geqslant \frac{1}{s} \sum_{a: \varphi(a) \geqslant \theta \overline{\varphi}} \varphi(a) \geqslant \frac{1}{s} s \delta_{\theta} \theta \overline{\varphi} \geqslant \overline{\varphi} \delta_{\theta} \theta,$$

что и требовалось.

Следствие. Пусть p(f) — целочисленный неотрицательный параметр, заданный на множестве P_n . И пусть $\overline{p}(n) = 2^{-2^n} \sum_{f \in P_n} p(f)$ стремится

к 0 с ростом n. Тогда p(f)=0 для почти всех функций. \triangle

Лемма 2. (Неравенство Чебышёва). Пусть $\theta > 0$ и δ_{θ} — доля тех $a \in \mathcal{A}$, для которых $|\varphi(a) - \overline{\varphi}| \geqslant \theta$. Тогда $\delta_{\theta} \leqslant \frac{D\varphi}{\theta^2}$. Доказательство.

$$D\varphi = \frac{1}{s} \sum_{a \in \mathcal{A}} (\varphi(a) - \overline{\varphi})^2 \geqslant \frac{1}{s} \sum_{a: |\varphi(a) - \overline{\varphi}| \geqslant \theta} (\varphi(a) - \overline{\varphi})^2 \geqslant \delta_{\theta} \theta^2.$$

Отсюда и вытекает утверждение.

Утверждение 0.1. Пусть $i_k(f)$ — число интервалов размерности k функции $f \in P_n$, и пусть $\overline{i_k}(n) = 2^{-2^n} \sum_{f \in P_n} i_k(f)$. Тогда $\overline{i_k}(n) = \binom{n}{k} 2^{n-k-2^k}$.

Доказательство. Пусть $\mathcal{I}_k^n=\{I_j,j=\overline{1,\binom{n}{k}}2^{n-\overline{k}}\}$ — множество всех граней размерности k куба B^n . Введём функцию

$$e(I,f) = \begin{cases} 1, \text{если } I \subseteq N_f, \\ 0, \text{если } I \not\subseteq N_f, \end{cases}$$

определённую на парах $(I,f),\,I\in\mathcal{I}_k^n,\,f\in P_n.$ Пусть $\Phi(I)$ — число функций $f\in P_n$ таких, что $I\subseteq N_f.$ Тогда

$$\overline{i_k}(n) = 2^{-2^n} \sum_{f \in P_n} i_k(f) = 2^{-2^n} \sum_{f \in P_n} \sum_{I \in \mathcal{I}_k^n} e(I, f) = 2^{-2^n} \sum_{I \in \mathcal{I}_k^n} \Phi(I).$$

Нетрудно подсчитать, что $\Phi(I)=2^{2^n-2^k}$. Поэтому $\overline{i_k}(n)=2^{n-k-2^k}\binom{n}{k}$, что и требовалось. \square

Утверждение 0.2. Пусть $Di_k(n) = 2^{-2^n} \sum_{f \in P_n} \left(i_k(f) - \overline{i_k}(n)\right)^2 -$ дисперсия параметра $i_k(f)$. Тогда

$$Di_k(n) = 2^{n-2^{k+1}} \binom{n}{k} \sum_{j=0}^k \binom{n}{j} \binom{n-k}{k-j} (2^{2^j}-1).$$

 \mathcal{L} оказательство. Пусть \mathcal{I}_k^n — множество k-мерных граней куба B^n . Рассмотрим функцию e(I,I',f), определённую на тройках вида (I,I',f), где $I,I'\in\mathcal{I}_k^n,\,f\in P_n$, такую, что

$$e(I, I', f) = \begin{cases} 1, \text{если } I \cup I' \subseteq N_f, \\ 0, \text{если } I \cup I' \not\subseteq N_f. \end{cases}$$

Пусть $\Phi(I,I')$ — число функций $f\in P_n$ таких, что $I\cup I'\subseteq N_f$. Нетрудно видеть, что если $|I\cap I'|=2^j$, то $\Phi(I,I')=2^{2^n-2^{k+1}+2^j}=\Phi_j$. Если же $|I\cap I'|=0$, то $\Phi(I,I')=2^{2^n-2^{k+1}}=\Phi_\varnothing$. Преобразуем выражение для $Di_k(n)$.

$$Di_k(n) = 2^{-2^n} \sum_{f \in P_n} (i_k^2(f) - 2i_k(f)\overline{i_k}(n) + \overline{i_k}^2(n)) =$$

$$= 2^{-2^n} \sum_{f \in P_n} i_k^2(f) - \overline{i_k}^2(n). \quad (1)$$

Подсчитаем $S = \sum_{f \in P_n} i_k^2(f)$. Имеем:

$$S = \sum_{I,I' \in \mathcal{I}_k^n} \sum_{f \in P_n} e(I,I',f) = \sum_{I,I' \in \mathcal{I}_k^n} \Phi(I,I') =$$

$$= \sum_{j=0}^k \binom{n}{j} 2^{n-j} \binom{n-j}{k-j} \binom{n-k}{k-j} \Phi_j +$$

$$+ \left(\binom{n}{k} 2^{n-k} \right)^2 - \sum_{j=0}^k \binom{n}{j} 2^{n-j} \binom{n-j}{k-j} \binom{n-k}{k-j} \Phi_\varnothing =$$

$$= \binom{n}{k} 2^{n-2^k+2^n} \sum_{j=0}^k \binom{k}{j} \binom{n-k}{k-j} 2^{-j} (2^{2^j}-1) + 2^{2^n} \left(\binom{n}{k} 2^{n-k-2^k} \right)^2.$$

В последнем переходе использовалось равенство $\binom{n}{j}\binom{n-j}{k-j} = \binom{n}{k}\binom{k}{j}$. Отсюда и из (1) вытекает утверждение. \square

Теорема 1. [21] Пусть $\psi(n) \to \infty$ при $n \to \infty$. Тогда для почти всех функций алгебры логики $f(\tilde{x}^n)$ число k-мерных интервалов функции f удовлетворяет неравенствам:

$$\binom{n}{k} \left(2^{n-k-2^k} - \psi(n) \sqrt{2^{n-k-2^k}} \right) < i_k(f) < \binom{n}{k} \left(2^{n-k-2^k} + \psi(n) \sqrt{2^{n-k-2^k}} \right). \tag{2}$$

Доказательство. Воспользуемся неравенством Чебышёва, положив $\theta = \psi(n)\binom{n}{k}\sqrt{2^{n-k-2^k}}$. Необходимо показать, что $Di_k(n)/\theta^2 \to 0$ при $n \to \infty$. Оценим $Di_k(n)$. Величина $a_j = 2^{-j}(2^{2^j}-1)$ возрастает по j,

поскольку $\frac{a_{j+1}}{a_i} = \frac{1}{2}(2^{2^j} + 1) > 1$. Поэтому

$$Di_{k}(n) = \binom{n}{k} 2^{n-2^{k+1}} \sum_{j=0}^{k} \binom{k}{j} \binom{n-k}{k-j} a_{j} \leqslant$$

$$\leqslant \binom{n}{k} 2^{n-2^{k+1}} 2^{-k} (2^{2^{k}} - 1) \sum_{j=0}^{k} \binom{k}{j} \binom{n-k}{k-j} \leqslant \binom{n}{k}^{2} 2^{n-k-2^{k}}.$$

Отсюда $Di_k(n)/\theta^2 \leqslant \psi^{-2}(n) \to 0$ при $n \to \infty$.

Следствие 1. У почти всех функций $f(\tilde{x}^n)$ нет интервалов размерности большей, чем $\lceil \log_2 n \rceil$.

В самом деле, положим для краткости $k_0 = \lceil \log_2 n \rceil$, и пусть $\psi(n) = n$. Тогда

$$i_{k_0+1}(f) < \binom{n}{k_0+1} \left(2^{n-k_0-1-2^{k_0+1}} + n\sqrt{2^{n-k_0-1-2^{k_0+1}}}\right).$$

Выражение в правой части стремится к нулю с ростом n. Следовательно, у почти всех функций $f(\tilde{x}^n)$ нет интервалов размерности $\lceil \log_2 n \rceil + 1$, а значит, и интервалов большей размерности.

Следствие 2. Для почти всех функций

$$2^{n-1} - n\sqrt{2^{n-1}} \le |N_f| \le 2^{n-1} + n\sqrt{2^{n-1}}.$$

В самом деле, заметим, что $|N_f|=i_0(f)$. Тогда утверждение вытекает из теоремы 1, если положить в ней $\psi(n)=n$.

Следствие 3. Пусть $k_1 = \lceil \log_2 \log_2 n + \log_2 \log_2 \log_2 n \rceil$, а $Q_{k_1}(f)$ — число вершин $\tilde{\alpha} \in N_f$, содержащихся хотя бы в одном интервале функции f размерности большей, чем k_1 . Тогда у почти всех функций

$$Q_{k_1}(f) \leqslant n^{-(1-\delta_n)\log_2\log_2 n} \cdot 2^n$$
, где $\delta_n \to 0$ при $n \to \infty$.

В самом деле, пусть $Q'_{k_1}(f)$ — число вершин $\tilde{\alpha} \in N_f$, содержащихся хотя бы в одном интервале размерности, равной k_1+1 . Ясно, что $Q_{k_1}(f)=Q'_{k_1}(f)\leqslant 2^{k_1+1}\cdot i_{k_1+1}(f)$, но у почти всех функций

$$i_{k_1+1}(f(\tilde{x}^n)) \leqslant \overline{i_{k_1+1}}(n) \left(1 + \psi(n)2^{-\frac{1}{2}(n-k_1-1-2^{k_1+1})}\right).$$

Полагая $\psi(n)=n$, получим для произвольного ε и достаточно больших n

$$Q_{k_1}(f) \leqslant \binom{n}{k_1+1} 2^{n-2^{k_1+1}} (1+\varepsilon) \leqslant (1+\varepsilon) n^{k_1+1} 2^{n-2\log_2 n \log_2 \log_2 n} \leqslant$$
 $\leqslant n^{-(1-\delta_n) \log_2 \log_2 n} 2^n$, где $\delta_n \to 0$ при $n \to \infty$. \square

Следствие 4. Пусть $k_2 = \lfloor \log_2 \log_2 n \rfloor$, i(f) — число всех интервалов функции f. Тогда для почти всех функций $f(\tilde{x}^n)$

$$i(f) = \left(\binom{n}{k_2} 2^{n-k_2-2^{k_2}} + \binom{n}{k_2+1} 2^{n-k_2-1-2^{k_2+1}} \right) (1+\delta_n),$$

где $\delta_n \to 0$ при $n \to \infty$.

Рассмотрим отношение $\lambda_k = \frac{\overline{i_{k+1}}(n)}{i_k(n)} = \frac{n-k}{(k+1)2^{2^k+1}}$. Ясно, что $\lambda_k \to \infty$ при $k < k_2$ и $\lambda_k \to 0$ при $k \geqslant k_2$. Для достаточно больших n $\lambda_k > 1$ при $k < k_2$ и $\lambda_k < 1$ при $k \geqslant k_2$. Поэтому $\max_k \overline{i_k}(n)$ достигается либо при $k = k_2$, либо при $k = k_2 + 1$.

Полагая в (2) $\psi(n)=n$, получим, что для почти всех функций $f(\tilde{x}^n)$ и $k\leqslant \lceil \log_2 n \rceil$

$$\overline{i_k}(n)(1-\delta_n) < i_k(f) < \overline{i_k}(n)(1+\delta_n),$$

где $\delta_n \to 0$ при $n \to \infty$. Суммируя эти неравенства по k, $0 \leqslant k \leqslant \lceil \log_2 n \rceil$, и учитывая, что $\lambda_k > n^c$, c > 0 при $k < k_2$ и $\lambda_k < (\log_2 \log_2 n)^{-1}$ при $k \geqslant k_2$, получим, что для почти всех функций

$$(\overline{i_{k_2}}(n) + \overline{i_{k_2+1}}(n))(1 - \delta'(n)) < i(f) < (\overline{i_{k_2}}(n) + \overline{i_{k_2+1}}(n))(1 + \delta'(n)),$$

где $\delta'(n) \to 0$ при $n \to \infty$.

Следствие 5. Для почти всех функций $f(\tilde{x}^n)$

$$i(f) = n^{(1-\delta_n)\log_2\log_2 n} 2^n$$
, где $\delta_n = O\left(\frac{1}{\log_2 n}\right)$.

Вытекает из предыдущего следствия. \triangle

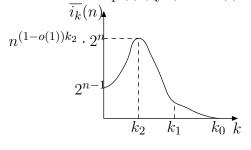


Рис. 1

На рис. 1 показана зависимость $\overline{i_k}(n)$ от k. Из теоремы 1 вытекает, что для почти всех функций $f(\tilde{x}^n)$ параметр $i_k(f)$ зависит от k подобным же образом.

Следствие 6. Для почти всех функций $f(\tilde{x}^n)$ число максимальных интервалов не превосходит $n^{(1-o(1))\log_2\log_2n}2^n$. \triangle

Следствие 7. Пусть $l^M(f), l(f)$ — длины, а $L(f), L^{\kappa}(f)$ — сложности минимальной и кратчайшей д.н.ф. функции f. Тогда для почти всех функций $f(\tilde{x}^n)$

$$l^{M}(f) = l(f)(1 + \delta_{n}), \quad L^{\kappa}(f) = L(f)(1 + \delta'_{n}), \quad L(f) = nl(f)(1 + \delta''_{n}),$$

где $\delta_n, \delta'_n, \delta''_n \to 0$ при $n \to \infty$.

В силу следствия 1 имеем:

$$(n - \lceil \log_2 n \rceil) l(f) \leqslant (n - \lceil \log_2 n \rceil) l^M(f) \leqslant L(f) \leqslant L^{\kappa}(f) \leqslant n l(f).$$

Отсюда и вытекает утверждение.

Таким образом, для получения асимптотических оценок параметров $l^{M}(f),\ l(f),\ L(f),\ L^{\kappa}(f)$ достаточно найти асимптотическую оценку одного из параметров, например, l(f).

Теорема 2. [21] Для почти всех функций $f(\tilde{x}^n)$

$$L(f) \gtrsim \frac{cn2^{n-1}}{\log_2 n \log_2 \log_2 n}, \quad l(f) \gtrsim \frac{c \cdot 2^{n-1}}{\log_2 n \log_2 \log_2 n}, \quad \frac{1}{2} < c < 1.$$

Доказательство. Рассмотрим подмножество P'_n функций $f \in P_n$, обладающих следующими свойствами:

10.
$$|N_f| \ge 2^{n-1} - n \cdot \sqrt{2^{n-1}},$$

20. $Q_{k_1}(f) \le n^{-(1+o(1))\log_2\log_2 n} 2^n.$

Из следствий 1,2,3 вытекает, что $\lim_{n\to\infty}|P_n'|2^{-2^n}=1$. Покажем, что для всякой функции $f \in P'_n$ любое покрытие множества N_f интервалами имеет мощность $\geqslant \frac{c \cdot 2^{n-1}}{\log_2 n \log_2 \log_2 n}$. В самом деле, из свойств 1^0 и 2^0 вытекает, что по меньшей мере $2^{n-1}(1-o(1))$ вершин множества N_f покрываются лишь интервалами размерности не большей, чем

$$k_1 = \lceil \log_2 \log_2 n + \log_2 \log_2 \log_2 n \rceil.$$

Отсюда
$$l(f) \geqslant \frac{|N_f| - Q_{k_1}(f)}{2^{k_1}} \geqslant \frac{c \cdot 2^{n-1}}{\log_2 n \log_2 \log_2 n}$$
.

Отсюда $l(f)\geqslant \frac{|N_f|-Q_{k_1}(f)}{2^{k_1}}\geqslant \frac{c\cdot 2^{n-1}}{\log_2 n\log_2\log_2 n}.$ \square **Упражнение 0.1.** Пусть $s_k(f)$ — число максимальных интервалов размерности k функции f. Пусть

$$\overline{s_k}(n) = 2^{-2^n} \sum_{f \in P_n} s_k(f), \quad Ds_k(n) = 2^{-2^n} \sum_{f \in P_n} (s_k(f) - \overline{s_k}(n))^2.$$

Показать, что

- a) $\overline{s_k}(n) = \binom{n}{k} 2^{n-k-2^k} (1-2^{-2^k})^{n-k}$

- а) $s_k(n) = \binom{k}{k}^2$ (1) $\binom{n}{k}^2 2^{n-k-2^k}$; в) Для почти всех функций $f(\tilde{x}^n)$ и $k < \lceil \log_2 n \rceil$ $s_k(f) \sim \overline{s_k}(n)$; г) Для почти всех функций $f(\tilde{x}^n)$ $\sum_{k=0}^n s_k(f) \sim \overline{s_{k_2}}(n) + \overline{s_{k_2+1}}(n)$, $k_2 = \lceil \log_2 \log_2 n \rceil.$

Упражнение 0.2. Пусть δ_n — доля тех функций $f \in P_n$, у которых число максимальных интервалов больше, чем число интервалов, не являющихся максимальными. Показать, что существуют две монотонно возрастающие последовательности $\{n_i\}, \{m_k\}, j, k = 1, 2, \ldots$, такие, что для всякого $\varepsilon > 0$ существует $N = N(\varepsilon)$ такое, что $\delta_{n_i} < \varepsilon, \, \delta_{m_k} > 1 - \varepsilon$ для всех j, k > N.

Указание. Рассмотреть отношение $\frac{\overline{s_{k_2}}(n) + \overline{s_{k_2+1}}(n)}{\overline{i_{k_2}}(n) + \overline{i_{k_2+1}}(n)}$. **Упражнение 0.3.** Пусть $c_k(f)$ — число ядровых интервалов размерности k функции f, а $\overline{c_k}(n) = 2^{-2^n} \sum_{f \in P_n} c_k(f)$.

- а) Показать, что $\overline{c_k}(n) = \binom{n}{k} 2^{n-k-2^k} \left(1 (1-2^{-n+k})^{2^k}\right);$
- б) Пусть $\bar{c}(n) = \sum_{k=0}^{n} \overline{c_k}(n)$. Показать, что $\bar{c}(n) = n^{(1-o(1))\log_2\log_2 n}$;
- в) Показать, что у почти всех функций $f(\tilde{x}^n)$ $\sum\limits_{k=0}^n c_k(f) \leqslant n^{(1-o(1))\log_2\log_2 n}$.

Дадим теперь верхнюю оценку длины кратчайшей д.н.ф. для почти всех функций.

Пусть $P_n(\tilde{\alpha})$ — множество всех функций $f \in P_n$ таких, что $f(\tilde{\alpha}) = 1$. Очевидно, $|P_n(\tilde{\alpha})|=2^{2^n-1}$. Пусть $\mathcal{I}_k^n(\tilde{\alpha})$ — множество k-мерных граней куба B^n , содержащих вершину $\tilde{\alpha}$. Обозначим через $v_k(\tilde{\alpha},f)$ число k-мерных интервалов функции f, содержащих вершину $\tilde{\alpha}$. Пусть $\overline{v_k}(n) = 2^{-2^n+1} \sum_{f \in P_n(\tilde{\alpha})} v_k(\tilde{\alpha}, f)$, а $Dv_k(n) = 2^{-2^n+1} \sum_{f \in P_n(\tilde{\alpha})} (v_k(\tilde{\alpha}, f) - \overline{v_k}(n))^2$.

Утверждение 0.3.
$$\overline{v_k}(n) = \binom{n}{k} 2^{-2^k+1}$$
, $Dv_k(n) \leqslant \left(\frac{2k^3}{n} + \frac{k2^{2^k}}{\binom{n}{k}}\right) \overline{v_k}^2(n)$.

Доказательство. Аналогично тому, как это делалось при доказательстве утверждения 0.1, получаем, что

$$\overline{v_k}(n) = 2^{-2^n + 1} \sum_{I \in \mathcal{I}_k^n(\tilde{\alpha})} \Phi(I),$$

где $\Phi(I)$ — число функций $f\in P_n(\tilde{\alpha})$ таких, что $I\subseteq N_f$. Если $I\in \mathcal{I}_k^n(\tilde{\alpha}),$ то $\Phi(I)=2^{2^n-2^k}.$ Отсюда

$$\overline{v_k}(n) = \binom{n}{k} 2^{-2^k + 1}.$$

Покажем теперь, что $Dv_k(n) \leqslant 2^{-2^n+1} \cdot \sum \Phi(I,I')$, где $\Phi(I,I')$ — число функций $f \in P_n(\tilde{\alpha})$, для которых грани \overline{I}, I' из $\mathcal{I}_k^n(\tilde{\alpha})$ являются интервалами, а суммирование ведётся по всем парам граней I, I' таким, что $I \cap I' \neq {\tilde{\alpha}}, I, I' \in \mathcal{I}_k^n(\tilde{\alpha}).$

В самом деле,

$$Dv_k(n) = 2^{-2^n + 1} \sum_{f \in P_n(\tilde{\alpha})} v_k^2(\tilde{\alpha}, f) - \overline{v_k}^2(n).$$

Оценим сверху $S = \sum_{f \in P_n(\tilde{\alpha})} v_k^2(\tilde{\alpha}, f)$. Нетрудно видеть, что

$$v_k^2(\tilde{\alpha},f) = \sum_{I \in \mathcal{I}_k^n(\tilde{\alpha})} \sum_{I' \in \mathcal{I}_k^n(\tilde{\alpha})} e(I,I',f),$$

где e(I,I',f)=1, если $I\cup I'\subseteq N_f,$ и e(I,I',f)=0, если $I\cup I'\not\subseteq N_f.$ Поэтому

$$S = \sum_{I \in \mathcal{I}_k^n(\tilde{\alpha})} \sum_{I' \in \mathcal{I}_k^n(\tilde{\alpha})} \sum_{f \in P_n(\tilde{\alpha})} e(I, I', f) = \sum_{(I, I')} \Phi(I, I'),$$

где суммирование ведётся по всевозможным упорядоченным парам граней I, I' из $\mathcal{I}_k^n(\tilde{\alpha})$. Разобьём последнюю сумму на две: $S = S_1 + S_2$, где

$$S_1 = \sum_{I \cap I' = \{\tilde{\alpha}\}} \Phi(I, I'), \quad S_2 = \sum_{I \cap I' \neq \{\tilde{\alpha}\}} \Phi(I, I').$$

Если $I\cap I'=\{\tilde{\alpha}\},$ то, очевидно, $\Phi(I,I')=2^{2^n-2^{k+1}+1}.$ Отсюда

$$S_1 = \binom{n}{k} \binom{n-k}{k} 2^{2^n - 2^{k+1} + 1} \leqslant 2^{2^n - 1} \left(\binom{n}{k} 2^{-2^k + 1} \right)^2 = 2^{2^n - 1} \overline{v_k}^2(n).$$

Теперь ясно, что

$$Dv_k(n) = 2^{-2^n + 1}(S_1 + S_2) - \overline{v_k}^2(n) \le 2^{-2^n + 1}S_2.$$

Оценим S_2 .

Пусть грани $I, I' \in \mathcal{I}^n_k(\tilde{\alpha})$ пересекаются по грани размерности j. Тогда $\Phi(I,I')=2^{2^n-2^{k+1}+2^j}$. Имеем:

$$S_2 = \sum_{j=1}^k \binom{n}{j} \binom{n-j}{k-j} \binom{n-k}{k-j} 2^{2^n - 2^{k+1} + 2^j} =$$

$$= \binom{n}{k} 2^{2^n - 2^{k+1}} \sum_{j=1}^k \binom{k}{j} \binom{n-k}{k-j} 2^{2^j}.$$

Положим $a_j = \binom{k}{j} \binom{n-k}{k-j} 2^{2^j}$. Отношение $\frac{a_{j+1}}{a_j} = \frac{2^{2^j} (k-j)^2}{(j+1)(n-2k+j+1)}$ меньше 1, если $j < \lfloor \log_2 \log_2 n \rfloor$, и больше 1, если $k > j \geqslant \lfloor \log_2 \log_2 n \rfloor$. Поэтому

$$\sum_{j=1}^{k} a_j \leqslant k(a_1 + a_k) \leqslant k \left(k \binom{n-1}{k-1} 2^2 + 2^{2^k} \right).$$

Таким образом,

$$S_2 \leqslant \binom{n}{k}^2 2^{2^n - 2^{k+1} + 1} \left(\frac{2k^3}{n} + \frac{k2^{2^k}}{\binom{n}{k}} \right) = 2^{2^n - 1} \overline{v_k}(n) \left(\frac{2k^3}{n} + \frac{k2^{2^k}}{\binom{n}{k}} \right),$$

a
$$Dv_k(n) \leqslant \left(\frac{2k^3}{n} + \frac{k2^{2^k}}{\binom{n}{k}}\right) \overline{v_k}^2(n)$$
.

Следствие. Если $k \leqslant k_1 - 1 = \lceil \log_2 \log_2 n + \log_2 \log_2 \log_2 n \rceil - 1$, то $Dv_k(n) < \frac{c \log_2 n}{n} \overline{v_k}^2(n)$, где c — константа. \triangle

Утверждение 0.4. Пусть $1 \le k \le k_1 - 1$. Тогда доля δ_n тех функций $f \in P_n(\tilde{\alpha})$, для которых $|v_k(\tilde{\alpha}, f) - \overline{v_k}(n)| \geqslant \frac{1}{\log_2 n} \overline{v_k}(n)$, не превосхо-ДИТ $\frac{c \log_2^3 n}{n}$

Доказательство. Применяя неравенство Чебышёва и полагая

$$\theta = \frac{\overline{v_k}(n)}{\log_2 n},$$

получаем утверждение.

Утверждение 0.5. Пусть $f\in P_n,\,b_k(f)$ — число тех вершин $\tilde{\alpha}\in N_f,$ для которых $|v_k(\tilde{\alpha},f)-\overline{v_k}(n)|\geqslant \frac{\overline{v_k}(n)}{\log_2 n}.$ Пусть δ_n' — доля тех функций, у которых $b_k(f) \leqslant \frac{\log_2^4 n}{n} 2^n$. Тогда $\delta_n' \geqslant 1 - \frac{c}{\log_2 n}$.

Доказательство. Оценим среднее $\overline{b_k}(n) = 2^{-2^n} \sum_{f \in D} b_k(f)$.

$$\overline{b_k}(n) = 2^{-2^n} \sum_{\tilde{\alpha} \in B^n} \Phi(\tilde{\alpha}),$$

где $\Phi(\tilde{\alpha})$ — число функций таких, что $\tilde{\alpha} \in N_f$ и $|v_k(\tilde{\alpha}, f) - \overline{v_k}(n)| \geqslant \frac{\overline{v_k}(n)}{\log_2 n}$. Но $\Phi(\tilde{\alpha}) = \delta_n 2^{2^n - 1} \leqslant \frac{c \log_2^3 n}{n}$. Отсюда $\overline{b_k}(n) \leqslant \frac{c \log_2^3 n}{n} 2^n$. В силу леммы 1 доля тех функций $f \in P_n$, для которых $b_k(f) \geqslant \frac{\log_2^4 n}{n}$, не превосходит $c/\log_2 n$. Значит, доля тех функций f, для которых $b_k(f)\leqslant \frac{\log_2^4 n}{n}2^n$, больше, чем $1 - \frac{c}{\log_2 n}$, что и требовалось доказать.

Теорема 3. [22] Для почти всех функций $f(\tilde{x}^n)$ существует д.н.ф. \mathcal{D} длины $l(\mathcal{D}) \lesssim \frac{c \cdot 2^n}{\log n}$ и сложности $L(\mathcal{D}) \lesssim \frac{c n 2^n}{\log n}$.

Доказательство. Рассмотрим подмножество $P_n'' \subset P_n$ всех функций $f(\tilde{x}^n)$, обладающих следующими свойствами:

$$1^{0}$$
. $|N_f| \leq 2^{n-1} + n\sqrt{2^{n-1}}$;

$$2^{0}$$
. $b_{k}(f) < \frac{\log_{2}^{4} n}{n} 2^{n}$ для всех $k \leqslant k_{1} - 2$;

$$2^{0}$$
. $b_{k}(f) < \frac{\log_{2}^{4} n}{n} 2^{n}$ для всех $k \leqslant k_{1} - 2$; 3^{0} . $i_{k_{1}-2}(f) = \binom{n}{k_{1}-2} 2^{n-k_{1}+2-2^{k_{1}-2}} (1+\delta_{n})$, где $\delta_{n} \to 0$ при $n \to \infty$.

Из следствия 2 и предыдущего утверждения вытекает, что почти все функции обладают свойствами 1^0 и 2^0 .

Свяжем теперь с каждой функций $f \in P_n''$ гиперграф $H_f = (V, \mathcal{E}),$ в котором $V = N_f,$ а \mathcal{E} совпадает с множеством всех интервалов функции f. Пусть \mathcal{F} — множество всех интервалов размерности

$$k = \lceil \log_2 \log_2 n + \log_2 \log_2 \log_2 n \rceil - 2,$$

а Y — множество тех $\tilde{\alpha} \in N_f$, для которых $v_k(\tilde{\alpha}, f) \geqslant \overline{v_k}(n)(1 - \frac{1}{\log_2 n})$. Положим $\varepsilon = \frac{2\log_2^4 n}{n}$. Ясно, что условия леммы ?? выполняются, поэтому длина всякого градиентного покрытия гиперграфа H не превосходит

$$1 + \frac{\log_2^4 n}{n} 2^n + 2^{n-k_1+2} (1+\delta_n) \ln(e2^{k_1-2} (1+\delta_n')) \sim k_1 2^{n-k_1+2} \sim \frac{c \cdot 2^n}{\log n}.$$

Отсюда и вытекает утверждение теоремы.

Таким образом, у почти всех функций $f(\tilde{x}^n)$ длина кратчайшей д.н.ф. удовлетворяет неравенствам

$$\frac{c_1 2^{n-1}}{\log_2 n \log_2 \log_2 n} \leqslant l(f) \leqslant \frac{c \cdot 2^n}{\log_2 n}.$$

Отметим, что верхняя оценка получена в теореме 3 с помощью градиентного алгоритма. Оказывается, что почти всегда с помощью весьма простого алгоритма можно получить д.н.ф, «довольно близкую» к кратчайшей.

Литература

- [1] Яблонский С. В. Функциональные построения в k-значной логике. Труды МИ АН СССР, 1958, 51, с. 5-142.
- [2] Яблонский С. В. Введение в теорию функций k-значной логики. Сб. «Дискретная математика и математические вопросы кибернетики», т.1, М., «Наука», 1974, с. 9-66.
- [3] Журавлёв Ю. И. Алгоритмы построения минимальных д.н.ф. Сб. «Дискретная математика и математические вопросы кибернетики», т.1, М., «Наука», 1974, с. 67-98.
- [4] Васильев Ю. Л., Глаголев В. В. Метрические свойства д.н.ф. Сб. «Дискретная математика и математические вопросы кибернетики», т.1, М., «Наука», 1974, с. 99-148.
- [5] Яблонский С. В. Об алгоритмических трудностях синтеза минимальных контактных схем. Сб. «Проблемы кибернетики», вып. 2, М., Физматгиз, 1960.
- [6] Карп Р. М. Сводимость комбинаторных проблем. Сб. «Кибернетический сборник», вып. 12 (нов. серия), М., «Мир», 1975.
- [7] Lubell D. A short proof of Sperner's lemma. Journ. Comb. Theory 1, N2, 1966.
- [8] Ансель Ж. О числе монотонных булевых функций *п* переменных. Сб. «Кибернетический сборник», вып. 5, М., «Мир», 1968, с. 53-57.
- [9] Викулин А. П. Оценка числа конъюнкций в сокращённой д.н.ф. Сб. «Проблемы кибернетики», вып. 29, М., «Наука», с. 151-166.
- [10] Гаджиев М. М. Максимальная длина сокращённой д.н.ф. для булевых функций пяти и шести переменных. Сб. «Дискретный анализ», вып. 18, Новосибирск, 1971, с. 3-24.

- [11] Нигматуллин Р. Г. Метод наискорейшего спуска в задачах на покрытие. Сб. «Вопросы точности и эффективности вычислительных алгоритмов» (труды симпозиума), вып. 5, Киев, 1969, с. 116-126.
- [12] Глаголев В. В. О длине тупиковой д.н.ф. Мат. заметки, 1967, 2, №6, с. 665-672.
- [13] Журавлёв Ю. И. Теоретико-множественные методы в алгебре логики. Сб. «Проблемы кибернетики», вып. 8, М., Физматгиз, 1962, с. 5-44.
- [14] Лупанов О. Б. О реализации функции алгебры логики формулами из конечных классов (формулами ограниченной глубины) в базисе &, ∨, ¬. Сб. «Проблемы кибернетики», вып. 6, М., Физматгиз, 1961, с. 5-14.
- [15] Васильев Ю. Л. О сравнении сложности тупиковых и минимальных д.н.ф. Сб. «Проблемы кибернетики», вып. 10, М., Физматгиз, 1963, с. 5-61.
- [16] Журавлёв Ю. И. Оценка для числа тупиковых д.н.ф. функций алгебры логики. Сиб. матем. журнал, 1962, 3, №5, с. 802-804.
- [17] Васильев Ю. Л. О «суперпозиции» сокращённых д.н.ф. Сб. «Проблемы кибернетики», вып. 12, М., «Наука», 1964, с. 239-242.
- [18] Коспанов Э. Ш. О произведении кратчайших д.н.ф. Сб. «Дискретный анализ», вып. 18, Новосибирск, 1971, с. 35-40.
- [19] Левин А. А. Об относительной сложности сокращённой д.н.ф. Сб. «Дискретный анализ», вып. 15, Новосибирск, 1969, с. 25-34.
- [20] Левин А. А. Об отношении сложности д.н.ф. функции к сложности д.н.ф. её отрицания. Сб. «Дискретный анализ», вып. 16, Новосибирск, 1970, с. 77-81.
- [21] Глаголев В. В. Некоторые оценки д.н.ф. функций алгебры логики. Сб. «Проблемы кибернетики», вып. 19, М., «Наука», 1967, с. 75-94.
- [22] Сапоженко А. А. О сложности д.н.ф., получаемых с помощью градиентного алгоритма. Сб. «Дискретный анализ», вып. 21, Новосибирск, 1972, с. 62-71.
- [23] Феллер В. Введение в теорию вероятностей и её применения, т.1. М., «Мир», 1967.

- [24] Сапоженко А. А. О наибольшей длине тупиковой д.н.ф. у почти всех функций. Матем. заметки, 1968, 4, №6, с. 649-658.
- [25] Лин Синь-Лян. О сравнении сложностей минимальных и кратчайших д.н.ф. для функций алгебры логики. Сб. «Проблемы кибернетики», вып. 18, М., «Наука», 1967, с. 11-44.
- [26] Сапоженко А. А. Геометрические свойства почти всех функций алгебры логики. Сб. «Проблемы кибернетики», вып. 30, М., «Наука», 1975, с. 227-261.
- [27] Лупанов О. Б. О синтезе некоторых классов управляющих систем. Сб. «Проблемы кибернетики», вып. 10, М., Физматгиз, 1963, с. 63-99.
- [28] Харари Ф. Теория графов. М., «Мир», 1973.
- [29] Чухров И. П. О числе тупиковых дизъюнктивных нормальных форм. Докл. АН СССР, 1982, 262, №6, с. 1329-1332.

Список сокращений и обозначений

```
б.ф. - булева функция д.н.ф. - дизъюнктивная нормальная форма э.к. - элементарная конъюнкция \triangle - очевидное утверждение \square - конец доказательства \tilde{x}^n - вектор переменных (x_1, x_2, \dots, x_n) X^n - множество переменных \{x_1, x_2, \dots, x_n\} B^n - единичный n-мерный куб \mathcal{D}^c, \mathcal{D}^c_f - сокращённая д.н.ф. (функции f) \mathcal{D}^\kappa, \mathcal{D}^\kappa_f - кратчайшая д.н.ф. (функции f) \mathcal{D}^T, \mathcal{D}^T_f - тупиковая д.н.ф. (функции f)
```

Оглавление

Оценки параметров почти всех функций	1
Оценки длины сокращённой и кратчайшей д.н.ф. для почти	1
всех функций	1
Литература	11
Список сокращений и обозначений	15