КОМПЬЮТЕРЫ |
В 1989 году была сделана очередная попытка расширить классификацию Флинна и, тем самым, преодолеть ее недостатки. Д.Скилликорн разработал подход [6], пригодный для описания свойств многопроцессорных систем и некоторых нетрадиционных архитектур, в частности dataflow и reduction machine.
Предлагается рассматривать архитектуру любого компьютера, как абстрактную структуру, состоящую из четырех компонент:
Функции процессора команд во многом схожи с функциями устройств управления последовательных машин и, согласно Д.Скилликорну, сводятся к следующим:
Функции процессора данных делают его , во многом, похожим на арифметическое устройство традиционных процессоров:
В терминах таким образом определенных основных частей компьютера структуру традиционной фон-неймановской архитектуры можно представить в следующем виде:
Это один из самых простых видов архитектуры, не содержащих переключателей. Для описания параллельных вычислительных систем автор зафиксировал четыре типа переключателей, без какой-либо явной связи с типом устройств, которые они соединяют:
Примеров подобных переключателей можно привести очень много. Так, все матричные процессоры имеют переключатель типа 1-n для связи единственного процессора команд со всеми процессорами данных. В компьютерах семейства Connection Machine каждый процессор данных имеет свою локальную память, следовательно, связь будет описываться как n-n. В тоже время, каждый процессор команд может связаться с любым другим процессором, поэтому данная связь будет описана как nxn.
Классификация Д.Скилликорна состоит из двух уровней. На первом уровне она проводится на основе восьми характеристик:
Рассмотрим упомянутый выше компьютер Connection Machine 2. В терминах данных характеристик его можно описать:
(1, 1, 1-1, n, n, n-n, 1-n, nxn),
а условное изображение архитектуры приведено на следующем рисунке:
Для сильно связанных мультипроцессоров (BBN Butterfly, C.mmp) ситуация иная. Такие системы состоят из множества процессоров, соединенных с модулями памяти с помощью динамического переключателя. Задержка при доступе любого процессора к любому модулю памяти примерно одинакова. Связь и синхронизация между процессорами осуществляется через общие (разделяемые) переменные. Описание таких машин в рамках данной классификации выглядит так:
(n, n, n-n, n, n, nxn, n-n, нет),
а саму архитектуру можно изобразить так, как на следующем рисунке:
Используя введенные характеристики и предполагая, что рассмотрение количественных характеристик можно ограничить только тремя возможными вариантами значений: 0, 1 и n (т.е. больше одного), можно получить 28 классов архитектур.
В классах 1-5 находятся компьютеры типа dataflow и reduction, не имеющие процессоров команд в обычном понимании этого слова. Класс 6 это классическая фон-неймановская последовательная машина. Все разновидности матричных процессоров содержатся в классах 7-10. Классы 11 и 12 отвечают компьютерам типа MISD классификации Флинна и на настоящий момент, по мнению автора, пусты. Классы с 13-го по 28-й занимают всесозможные варианты мультипроцессоров, причем в 13-20 классах находятся машины с достаточно привычной архитектурой, в то время, как архитектура классов 21-28 пока выглядит экзотично.
На втором уровне классификации Д.Скилликорн просто уточняет описание, сделанное на первом уровне, добавляя возможность конвейерной обработки в процессорах команд и данных.
В конце данного описания имеет смысл привести сформулированные автором три цели, которым должна служить хорошо построенная классификация:
© Лаборатория Параллельных Информационных Технологий, НИВЦ
МГУ