Глава 1

УПРАЖНЕНИЯ

1.1 Классическая логика предикатов первого порядка: синтаксис и семантика

Упражнение 1.1. В каждой из приведенных ниже сокращенных записей формул КЛП

- восстановите опущенные скобки, руководствуясь соглашением о приоритете логических операций;
- б) определите область действия каждого квантора;
- в) выделите
 - все связанные вхождения переменных,
 - все свободные вхождения переменных.
- 1. $\exists x \ P(x) \rightarrow \forall y \ R(x,y);$
- 2. $\exists y \neg \exists x \ P(x) \lor \forall x \ P(x) \rightarrow P(y);$
- 3. $\forall x \ (\exists x \ P(x) \to \forall y \ R(x,y) \ \lor \ \neg P(y)).$

Упражнение 1.2. Для каждого из приведенных ниже высказываний, состоящих из одного или более предложений

- а) сформируйте подходящую сигнатуру, используя константы для обозначения имен собственных и предикатные символы для обозначения свойств и отношений, фигурирующих в высказывнии;
- б) используя выбранную сигнатуру, сопоставьте высказыванию $\underline{\text{замкнутую}}$ формулу КЛП, адекватно выражающую смысл этого высказывания.
- 1. Не все то золото, что блестит.
- 2. Если каждый любит сам себя, то кто-то кого-то любит.

- 3. Вассал моего вассала не мой вассал.
- 4. Только нечестные воры обкрадывают друг друга.
- 5. Несудившие неподсудны.
- 6. Маленькие богомолы едят друг друга, а большие нет.
- 7. Все мои друзья знакомы со мной, хотя некоторые мои знакомые со мной не дружат.
- 8. Мне нравится логика и все те, кому нравится то, что нравится мне.
- 9. Если задача имеет решение, то математик может ее решить. Я математик, но не могу решить этой задачи. Значит, задача неразрешима.
- 10. Если Василиск существует, то его кто-то видел. Всякий, кто видел Василиска, слеп. Слепой ничего не видит. Значит, Василиска не существует.
- 11. Вы можете обманывать всех иногда, вы можете обманывать кого-то всегда, но вы не можете обманывать всех всегда.

Обратите внимание на то, что некоторые из приведенных высказываний могут пониматься неоднозначно. Каким образом эта многосмысленность учитывается при построении формул КЛП? Проявляется ли она в построенных формулах?

Упражнение 1.3. В этом примере нас будут интересовать только такие интерпретации, в которых атомарные формулы выражают следующие свойства и отношения:

- $C(x) \langle x \kappa \rangle$;
- $S(x) \langle x \text{map} \rangle$;
- B(x) «x черный предмет»;
- W(x) «x белый предмет»;
- U(x,y) «предмет x лежит ниже предмета y».

Используя введенные предикаты, напишите формул логики предикатов для следующих утверждений:

- 1. «Хотя бы один предмет, лежащий ниже всех черных квадратов, является шаром»;
- 2. «Нет такого белого квадрата, который лежит под каким-то черным шаром»;
- 3. «Каков бы ни был черный предмет, либо он является шаром, лежащим выше всех белых квадратов, либо он является квадратом, лежащим ниже какого-нибудь шара»;
- 4. «Никакой черный квадрат и никакой белый шар не лежат друг над другом»;
- 5. «Если все шары черные, то белых квадратов нет»;
- 6. «Всякая фигура, не являющаяся белым квадратом, лежащим хотя бы под одним шаром, имеет черный цвет и лежит над всеми белыми фигурами».

Упражнение 1.4. Какие из утверждений, сформулированные в упражнении 1.3, адекватно выражаются приведенными ниже формулами:

- 1. $\forall x \ (S(x) \& B(x) \rightarrow \neg \exists y \ (W(y) \& S(y)));$
- 2. $\exists x \forall y \ (S(x) \& B(x) \rightarrow (\neg W(y) \lor \neg S(y)));$
- 3. $\forall x \ \forall y \ (W(x) \ \& \ C(x) \ \rightarrow \ (\neg B(y) \ \lor \ \neg S(y) \ \lor \ \neg U(x,y)));$
- 4. $\neg \exists x \ (W(x) \& C(x) \rightarrow \exists y (B(y) \& S(y) \& U(x,y))).$

Упражнение 1.5. Рассмотрим следующие четыре предиката геометрии:

- P(x) фигура x это точка на плоскости;
- L(x) фигура x это прямая на плоскости;
- B(x,y) фигура x лежит на фигуре y;
- E(x,y) фигура x совпадает с фигурой y.

Запишите замкнутые формулы (прекдложения) КЛП, выражающие следующие утверждения планиметрии:

- 1. Все прямые пересекаются друг с другом.
- 2. На каждой прямой есть точка, не принадлежащая никакой другой прямой.
- 3. Через любые две различные точки плоскости проходит единственная прямая.
- 4. Каковы бы ни были прямая и точке вне этой прямой, из всех прямых, проходящих через заданную точку, только одна не имеет общих точек с заданной прямой.

Для каждой формулы постройте две геометрические интерпретации, в одной из которых данная формула выполняется, а в другой - нет.

Запишите формулы КЛП, выражающие следующие предикаты:

- 1. отношение параллельности прямых;
- 2. свойство четырех точек образовывать четырехугольник;

Упражнение 1.6. Пусть задана сигнатура σ , состоящая из двух трехместных предикатных символов $S^{(3)}, P^{(3)}$. Пусть также задана интерпретация $I = <\mathbb{N}, \bar{S}^{(3)}, \bar{P}^{(3)}>$. Предметной областью интерпретации является множество натуральных чисел $\mathbb{N}=\{0,1,2,\ldots\}$. В этой интерпретации предикатные символы выражают следующие отношения на множестве натуральных чисел:

$$\begin{array}{lll} \bar{S}^{(3)}(m,n,k) = \mathbf{true} & \Longleftrightarrow & m+n=k, \\ \bar{P}^{(3)}(m,n,k) = \mathbf{true} & \Longleftrightarrow & m\times n=k. \end{array}$$

Запишите формулу с одной свободной переменной x, выполнимую в интерпретации I тогда и только тогда, когда

1. значением переменной x является натуральное число 0;

- 2. значением переменной x является натуральное число 1;
- 3. значением переменной x является натуральное число 2;
- 4. значением переменной x является натуральное число n;
- 5. значением переменной x является четное число;
- 6. значением переменной x является простое число.

Запишите формулу с двумя свободными переменными x, y, истинную в интерпретации I тогда и только тогда, когда

- 1. значения переменных x и y одинаковы;
- 2. значение переменный x меньше значения переменной y;
- 3. значение переменный x кратно значению переменной y.

Запишите формулу с тремя свободными переменными x,y, истинную в интерпретации I тогда и только тогда, когда значение переменной z является наибольшим общим делителем знаяений переменных x и y.

Упражнение 1.7. Пусть R — двухместный предикатный символ, соответствующий некоторому отношению на множестве M. Используя в случае необходимости предикат равенства =, запишите формулы, определяющие следующие свойства двухместного отношения;

- 1. *R* является рефлексивным отношением;
- 2. R является транзитивным отношением;
- 3. R является симметричным отношением;
- 4. R является антисимметричным отношением;
- $5. \ R$ является асимметричным отношением;
- 6. R является отношением частичного порядка;
- 7. R является отношением эквивалентности;
- 8. *R* является линейным порядком;
- 9. R является плотным порядком;
- 10. отношение R имеет максимальный элемент.

Упражнение 1.8. Предположим, что задана сигнатура σ , состоящая из

константы 0, представляющей действительное число 0;

1-местного функционального символа h, представляющего функцию, вычисляющую модуль действительного числа;

2-местных функциональных символов $+, -, \times$, представляющих функции, вычисляющие сумму, разность и произведение действительных чисел;

1-местного предикатного символа N, представляющего свойства математического объекта быть натуральным числом;

1-местного предикатного символа R, представляющего свойства математического объекта быть действительным числом;

1-местного предикатного символа S, представляющего свойства математического объекта быть последовательностью действительных чисел;

2-местных предикатных символов <, >, представляющих отношения сравнения действительных и натуральных чисел;

предиката равенства =;

2-местного предикатного символа L, выражающего следующее отношение: число x является пределом последовательности y;

2-местного предикатного символа A, выражающего следующее отношение: число x является предельной точкой последовательности y;

3-местного предикатного символа E, выражающего следующее отношение: число x является y-м элементом последовательности z.

Используя константные, функциональные и предикатные символы сигнатуры σ , постройте замкнутые формулы логики предикатов, выражающую следующие утверждения математического анализа.

- 1. Всякая сходящаяся последовательность действительных чисел ограничена.
- 2. Никакая последовательность ненулевых действительных чисел не имеет положительных предельных точек.
- 3. У любой последовательности действительных чисел, содержащей отрицательное число, есть хотя бы одна неположительная предельная точка.
- 4. Какова бы ни была последовательность действительных чисел, найдется отрезок, содержащий все ее предельные точки
- 5. Для любого отрезка [a,b] действительных чисел нет ни одной такой последовательности, состоящей из действительных чисел этого отрезка, у которой была бы хоть одна предельная точка вне этого отрезка.
- 6. Предел суммы любых двух сходящихся последовательностей действительных чисел равен сумме пределов этих последовательностей.
- 7. Каковы бы ни были две последовательности действительных чисел, если одна из них сходится к нулю, а другая ограничена, то и произведение этих последовательностей сходится к нулю.
- 8. Нет ни одной такой сходящейся последовательности, которую было бы нельзя представить в виде суммы двух сходящихся последовательностей.

- 9. Если произвольная ограниченная последовательность имеет единственную предельную точку, то эта последовательность является сходящейся.
- 10. Каков бы ни был отрезок [a,b] действительных чисел, если почти все элементы произвольной последовательности действительных чисел лежат вне этого отрезка, то и все предельные точки этой последовательности также лежат вне этого отрезка.
- 11. Какова бы ни была последовательность действительных чисел и отрезок [a,b] действительных чисел, если бесконечно много элементов этой последовательности содержится в данном отрезке, то хотя бы одна предельная точка данной последовательности также содержится в этом отрезке.
- 12. Если некоторое действительное число встречается бесконечно часто в произвольной последовательности действительных чисел, то данное число является предельной точкой этой последовательности.

1.2 Выполнимые и общезначимые формулы

Упражнение 1.9. Выясните, какие из приведенных ниже формул являются выполнимыми, какие являются невыполнимыми, а какие — общезначимыми.

16. $\forall x \exists y \ P(x,y) \& \forall x \ \forall y \ (P(x,y) \rightarrow P(y,x)) \& \forall x \ \forall y \ \forall z \ (P(x,y) \rightarrow (P(y,z) \rightarrow P(x,z))).$

```
1. \exists x \ P(x) \rightarrow \forall x \ P(x);

2. \neg(\exists x \ P(x) \rightarrow \forall x \ P(x));

3. \exists x \ \forall y \ (Q(x,x)\&\neg Q(x,y));

4. \exists x \ (P(x) \& \exists x \ \neg P(x));

5. (\forall x \ P(x) \rightarrow \forall x \ R(x)) \rightarrow \forall x \ (P(x)\&R(x));

6. \forall x \ (P(x)\&R(x)) \rightarrow (\forall x \ P(x) \& \forall x \ R(x));

7. (\forall x \ P(x) \& \forall x \ R(x)) \rightarrow \forall x \ (P(x)\&R(x));

8. \exists x \ (P(x)\&R(x)) \rightarrow (\exists x \ P(x) \& \exists x \ R(x));

9. (\exists x \ P(x) \& \exists x \ R(x)) \rightarrow \exists x \ (P(x)\&R(x));

10. \forall x \ \exists y \ Q(x,y) \rightarrow \exists y \ \forall x \ Q(x,y);

11. \exists y \ \forall x \ Q(x,y) \rightarrow \forall x \ \exists y \ Q(x,y);

12. \forall x \ (P(x) \rightarrow \neg R(x)) \rightarrow \neg (\exists x \ P(x) \& \forall x \ R(x));

13. \forall x \ \exists y \ \forall z \ (R(x,y) \rightarrow R(y,z));

14. \exists x \ \forall y \ \exists z \ (R(x,y) \rightarrow R(y,z));
```

15. $\exists x \ \forall y \ \exists z \ ((R(y,z) \rightarrow R(x,z)) \rightarrow (R(x,x) \rightarrow R(y,x)));$

Упражнение 1.10. Докажите, что формула

$$\exists x \forall y \ (P(x,y) \ \rightarrow \ (\neg P(y,x) \ \rightarrow \ ((P(x,x) \ \rightarrow \ P(y,y)) \ \& \ (P(y,y)to \ P(x,x)))))$$

истинна в любой интерпретации, область которой содержит не более трех элементов.

Упражнение 1.11. Существует ли необщезначимая формула, являющаяся истинной в любой интерпретации, область которой содержит не менее трех элементов?

Упражнение 1.12. Запишите необщезначимую формулу, являющуюся истинной в любой интерпретации, область которой содержит

- 1. не более одного элемента,
- 2. не более двух элементов,
- 3. не более n элементов, где n некоторое заданное натуральное число.

Упражнение 1.13. Существует ли такое предложение φ , логическим следствием которого

- 1. является любая замкнутая формула?
- 2. не является ни одна замкнутая формула?
- 3. является только конечное число замкнутых формул?

Упражнение 1.14. Какие формулы являются логическими следствиями

- 1. общезначимой формулы φ ?
- 2. противоречивой формулы φ ?

Упражнение 1.15. Пусть известно, что выполнимые замкнутые формулы φ и ψ не имеют ни одной общей модели. Какие из приведенных ниже утверждений всегда верны и почему?

- 1. Существует формула χ , логическим следствием которой являются обе формулы φ и ψ ;
- 2. Существует формула χ , которая является логическим следствием обеих формул φ и ψ ;
- 3. Формулы $\neg \varphi$ и $\neg \varphi$ также не имеют ни одной общей модели;
- 4. Ни одна из формул φ , ψ не является общезначимой.

Упражнение 1.16. Пусть Γ_1 и Γ_2 — два различных непротиворечивых множества замкнутых формул. Какие из приведенных ниже утверждений справедливы? Выбор ответа обосновать.

1. Объединение $\Gamma_1 \cup \Gamma_2$ и пересечение $\Gamma_1 \cap \Gamma_2$ всегда являются непротиворечивыми множествами.

- 2. Объединение $\Gamma_1 \cup \Gamma_2$ всегда является непротиворечивым множеством, потому что... Однако пересечение $\Gamma_1 \cap \Gamma_2$ может оказаться противоречивым множеством.
- 3. Пересечение $\Gamma_1 \cap \Gamma_2$ всегда является непротиворечивым множеством, однако, объединение $\Gamma_1 \cup \Gamma_2$ может оказаться противоречивым множеством.
- 4. Существуют примеры таких непротиворечивых множеств Γ_1 и Γ_2 , когда объединение $\Gamma_1 \cup \Gamma_2$ и пересечение $\Gamma_1 \cap \Gamma_2$ оказываются противоречивыми множествами.

Упражнение 1.17. Пусть Γ_1 и Γ_2 — некоторые множества предложений. Обозначим Δ_i , i=1,2, множество всех замкнутых формул, являющихся логическими следствиями множества предложений Γ_i . Каким может быть множество логических следствий совокупности предложений

- 1. $\Gamma_1 \cap \Gamma_2$?
- 2. $\Gamma_1 \cup \Gamma_2$?

Упражнение 1.18. Введем на множествах замкнутых формул отношение \leq следующим образом: отношение $\Gamma_1 \leq \Gamma_2$ имеет место для двух множеств замкнутых формул Γ_1 , Γ_2 тогда и только тогда, когда любая формула φ , $\varphi \in \Gamma_1$, является логическим следствием множества формул Γ_1 . Какими из перечисленных свойств

- 1. рефлексивность,
- 2. транзитивность,
- 3. симметричность,
- 4. тотальность: для любых множеств замкнутых формул Γ_1, Γ_2 верно хотя бы одно из соотношений $\Gamma_1 \preceq \Gamma_2$ или $\Gamma_2 \preceq \Gamma_1$,
- 5. U-монотонность: $\Gamma_1' \preceq \Gamma_2' \land \Gamma_1'' \preceq \Gamma_2'' \Rightarrow \Gamma_1' \cup \Gamma_1'' \preceq \Gamma_2' \cup \Gamma_2''$,
- 6. \cap -монотонность: $\Gamma_1' \preceq \Gamma_2' \land \Gamma_1'' \preceq \Gamma_2'' \Rightarrow \Gamma_1' \cap \Gamma_1'' \preceq \Gamma_2' \cap \Gamma_2''$,

обладает отношение \leq ?

1.3 Табличный вывод

Упражнение 1.19. Докажите общезначимость приведенных ниже формул, построив успешный табличный вывод для соответствующих семантических таблиц.

- 1. $\forall x \ P(x) \rightarrow \forall y \ P(y)$
- 2. $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$;
- 3. $\forall x \neg P(x) \rightarrow \neg \exists x P(x);$
- 4. $\forall x \ (P(x) \& R(x)) \rightarrow (\forall x \ P(x) \& \forall x \ R(x));$

```
5. (\forall x \ P(x) \ \& \ \forall x \ R(x)) \rightarrow \forall x \ (P(x) \& R(x));
```

6.
$$\exists x \ (P(x) \lor R(x)) \rightarrow (\exists x \ P(x) \lor \exists x \ R(x));$$

7.
$$(\exists x \ P(x) \lor \exists x \ R(x)) \rightarrow \exists x \ (P(x) \lor R(x));$$

8.
$$(\forall x \ P(x) \ \lor \ R(y)) \rightarrow \forall x \ (P(x) \ \lor \ R(y));$$

9.
$$\forall x \ (P(x) \lor R(y)) \rightarrow (\forall x \ P(x) \lor R(y));$$

10.
$$\exists y \ \forall x \ Q(x,y) \rightarrow \forall x \ \exists y \ Q(x,y);$$

11.
$$\forall x((\exists x \neg P(x) \rightarrow \exists x R(x)) \rightarrow \exists y (P(x) \lor R(y)));$$

12.
$$\forall x \ (P(x) \rightarrow \exists y \ R(x, f(y))) \rightarrow (\exists x \ \neg P(x) \lor \forall x \exists z R(x, z));$$

13.
$$\forall x \; \exists y \; \forall z \; (R(x,y) \rightarrow R(y,z));$$

14.
$$\exists x \ \forall y \ \exists z \ (R(x,y) \rightarrow R(y,z));$$

15.
$$\exists x \ (R(x) \& \exists x \ (P(x) \rightarrow \neg R(x)) \rightarrow \neg \forall x \ P(x));$$

16.
$$\exists x \ ((\forall y \ P(x,y) \ \lor \ \exists x \ R(x)) \ \to \ (\exists x \ P(x,x) \ \lor \ R(x)));$$

17.
$$\exists x \ (\forall x \ P(x) \rightarrow \neg (R(x) \& \exists x \ (P(x) \rightarrow \neg R(x))));$$

18.
$$\exists x \ (\exists y \ \neg P(x,y) \ \rightarrow \ \forall x \ R(x)) \ \rightarrow \ \forall x \ (R(x) \ \lor \ \exists x \ P(x,f(x)));$$

19.
$$\forall x \exists u \ (\exists v \forall y \ ((E(u,y) \rightarrow H(y,v)) \& \exists w \forall x \ (H(w,y) \rightarrow \neg H(x,v))) \rightarrow \exists y \ \neg E(x,y));$$

20.
$$\forall x \ (\forall y \exists v \forall u \ ((A(u,v) \rightarrow B(y,u)) \& \ (\neg \exists w \ A(w,u) \rightarrow \forall w \ A(w,v))) \rightarrow \exists y \ B(x,y)).$$

Упражнение 1.20. Докажите, что в том случае, если для таблицы $T = \langle \varphi \mid \emptyset \rangle$ существует успешный вывод, то формула φ невыполнима.

Упражнение 1.21. Пусть $\Gamma \subseteq CForm$ и $\varphi \in CForm$. Докажите, что существование успешного табличного вывода для таблицы $T = \langle \ \Gamma \mid \varphi \ \rangle$ свидетельствует о том, что формула φ является логическим множества формул Γ .

Упражнение 1.22. Докажите, что невыполнимость таблицы $\langle \varphi_1, \dots, \varphi_n \mid \psi_1, \dots, \psi_m \rangle$ раносильна общезначимости формулы $(\varphi_1 \& \dots \& \varphi_n) \to (\psi_1 \lor \dots \lor \psi_m)$.

Упражнение 1.23. Докажите, используя исчисление семантических таблиц, что формула $\exists z \ L(z, \mathcal{A}awa)$ логически следует из совокупности предложений

```
L(\mathcal{A}awa, Cawa),

L(Cawa, nuso),

L(\Pi awa, nuso),

\forall x (\exists y (L(\Pi awa, y)\&L(x, y)) \rightarrow L(\Pi awa, x)).
```

Упражнение 1.24. Выясните, применяя табличный вывод, какие из приведенных ниже формул являются выполнимыми, какие являются невыполнимыми, а какие — общезначимыми.

- 1. $\neg(\exists x \ P(x) \rightarrow \forall x \ P(x));$
- 2. $\exists x \ \forall y \ (Q(x,x)\& \neg Q(x,y));$
- 3. $\exists x \ (P(x) \& \exists x \ \neg P(x));$
- 4. $\forall x \ (P(x) \& \forall x \ \neg P(x));$
- 5. $(\exists x \ P(x) \& \exists x \ R(x)) \rightarrow \exists x \ (P(x)\&R(x));$
- 6. $(\forall x \ P(x) \& \forall x \ R(x)) \rightarrow \forall x \ (P(x)\&R(x)).$

Упражнение 1.25. Пусть известно, что семантическая таблица $\langle \Gamma \mid \emptyset \rangle$ имеет табличный вывод, одна из ветвей которого заканчивается такой семантической таблицей $T = \langle \Gamma' \mid \Delta' \rangle$, что $\Gamma' \cap \Delta' = \emptyset$ и при этом ни одно правило табличного вывода не применимо к таблице T. Какие из приведенных ниже утверждений наверняка справедливы и почему?

- 1. Множество формул Г не имеет модели;
- 2. Множество формул Γ имеет модель с бесконечной предметной областью;
- 3. В множестве формул Γ обязательно есть хотя бы одна общезначимая формула;
- 4. В множестве формул Г обязательно есть хотя бы одна противоречивая формула.

Упражнение 1.26. Пусть известно, что семантическая таблица $T = \langle \Gamma \mid \Delta \rangle$ имеет успешный табличный вывод. Какие из приведенных ниже утверждений при этом условии будут всегда справедливы и почему?

- 1. Хотя бы одна формула из множества формул Δ является общезначимой;
- 2. Хотя бы одна формула из множества формул Δ является выполнимой;
- 3. Хотя бы одна формула из множества формул Δ является противоречивой;
- 4. Множество формул Г имеет модель;
- 5. Множество формул Γ не имеет модели.

Упражнение 1.27. Известно, что семантическая таблица $T = \langle \varphi | \psi \rangle$ невыполнима. Какие из приведенных ниже утверждений всегда верны для любых замкнутых формул φ и ψ ?

- 1. Формула φ является логическим следствием формулы ψ ;
- 2. Формула ψ является логическим следствием формулы φ ;
- 3. Не существует успешного табличного вывода из семантической таблицы T;
- 4. Формула $\varphi \to \psi$ является противоречивой.

Упражнение 1.28. Какие из перечисленных ниже правил табличного вывода $\frac{T_0}{T_1,T_2}$ и $\frac{T_0}{T_1}$ являются корректными?

1.
$$\frac{\langle \Gamma, \varphi \to \psi \mid \Delta \rangle}{\langle \Gamma, \neg \varphi, \psi \mid \Delta \rangle}$$
;

2.
$$\frac{\langle \Gamma, \forall x \varphi(x) | \Delta \rangle}{\langle \Gamma, \varphi(x) | \Delta \rangle}$$
;

3.
$$\frac{\langle \Gamma_1, \Gamma_2 \mid \Delta_1, \Delta_2 \rangle}{\langle \Gamma_1 \mid \Delta_1 \rangle, \langle \Gamma_2 \mid \Delta_2 \rangle}$$
;

4.
$$\frac{\langle \Gamma_1, \Gamma_2 | \Delta \rangle}{\langle \Gamma_1 | \Delta \rangle, \langle \Gamma_2 | \Delta \rangle};$$

5.
$$\frac{\langle \Gamma \mid \Delta_1, \Delta_2 \rangle}{\langle \Gamma \mid \Delta_1 \rangle, \langle \Gamma \mid \Delta_2 \rangle};$$

6.
$$\frac{\langle \Gamma_1, \Gamma_2 \mid \Delta_1, \Delta_2 \rangle}{\langle \Gamma_1 \mid \Delta_1, \Phi \rangle, \langle \Gamma_2, \Phi \mid \Delta_2 \rangle};$$

1.4 Полнота табличного вывода

Упражнение 1.29. Используя исчисление семантических таблиц и стратегию построения табличного вывода, описанную в доказательстве теоремы полноты, проверьте выполнимость приведенных ниже семантических таблиц.

1.
$$T_1 = \langle \forall x \ P(c, x, x), \ \forall x \forall y \forall z \ (P(x, y, z) \rightarrow P(f(x), y, f(z))) \ | \ P(f(c), c, f(c)) \ \rangle;$$

$$2. \ T_2 = \langle \ \forall x \ P(c,x,x), \ \forall x \forall y \forall z \ (P(x,y,z) \ \rightarrow \ P(f(x),y,f(z))) \ | \ \exists z \ P(f(c),z,f(f(c))) \ \rangle;$$

3.
$$T_3 = \langle \forall x \forall y \forall z \ (P(x,y) \& P(y,z) \rightarrow P(x,z)), \ \forall x \neg (P(x,x) \mid \forall x \forall y \ (P(x,y) \rightarrow \neg P(y,x)) \ \rangle;$$

4.
$$T_4 = \langle \exists x \ (P(x) \& R(x)), \ \forall x \ (P(y) \rightarrow Q(y)) \mid \exists z \ (Q(z) \lor R(z)) \rangle$$
.

Упражнение 1.30. Какие из приведенных ниже множеств формул являются непротиворечивыми? Используйте для проверки непротиворечивости исчисление семантических таблиц.

1.
$$\Gamma_1 = \{ \forall x \ \neg R(x, x), \ \exists x \ P(x), \ \forall x \exists y \ R(x, y), \ \forall x \ (P(x) \rightarrow R(y, x)) \};$$

2.
$$\Gamma_2 = \{ \forall x \ \neg R(x,x), \ \forall y \exists x \ R(y,x), \ \forall x \forall y \forall z \ (R(x,y) \& R(y,z) \rightarrow R(x,z)) \}.$$

Упражнение 1.31. Пусть $\varphi(x)$ — формула логики предикатов, не содержащая константы c. Докажите, что формула $\forall x \ \varphi(x)$ является общезначимой тогда и только тогда, когда общезначима формула $\varphi(c)$. Остается ли это утверждение справедливым и в том случае, когда константа c содержится в формуле $\varphi(x)$?

Упражнение 1.32. Известно, что некоторая модель для формулы φ не является моделью для формулы ψ . Какие из приведенных ниже утверждений всегда верны для любых замкнутых формул φ и ψ ?

1. Не существует успешного табличного вывода из таблицы $T' = \langle \psi \mid \varphi \rangle$;

- 2. Не существует успешного табличного вывода из таблицы $T = \langle \varphi \mid \psi \rangle$;
- 3. Формула φ является логическим следствием формулы ψ ;
- 4. Формула ψ является логическим следствием формулы φ .

Упражнение 1.33. Известно, что для семантической таблицы $T = \langle \varphi \mid \psi \rangle$ нельзя построить ни одного успешного табличного вывода. Какие из приведенных ниже утверждений всегда верны для любых замкнутых формул φ и ψ ?

- 1. Таблица $T = \langle \varphi \mid \psi \rangle$ не является выполнимой;
- 2. Для таблицы $T' = \langle \ \psi \ | \ \varphi \ \rangle$ также не существует ни одного успешного табличного вывода;
- 3. Формула φ не является логическим следствием формулы ψ ;
- 4. Формула ψ не является логическим следствием формулы φ ;

Упражнение 1.34. Выберите и обоснуйте правильные варианты продолжения следующего утверждения. «Формула φ логики предикатов первого порядка выполнима тогда и только тогда, когда...»

- 1. в любом дереве табличного вывода для исходной таблицы $T = \langle \{\varphi\}, \emptyset \rangle$ каждая ветвь завершается закрытой таблицей;
- 2. В любом дереве табличного вывода для исходной таблицы $T = \langle \{\varphi\}, \emptyset \rangle$ хотя бы одна ветвь завершается закрытой таблицей;
- 3. Хотя бы в одном дереве табличного вывода для исходной таблицы $T = \langle \{\varphi\}, \emptyset \rangle$ каждая ветвь завершается закрытой таблицей;
- 4. Хотя бы в одном дереве табличного вывода для исходной таблицы $T = \langle \{\varphi\}, \emptyset \rangle$ хотя бы одна ветвь завершается закрытой таблицей.

Упражнение 1.35. Пусть известно, что множество замкнутых формул Γ не имеет модели. Какие из приведенных ниже утверждений справедливы и почему?

- 1. Существует успешный табличный вывод для исходной таблицы $T = \langle \Gamma, \emptyset \rangle;$
- 2. Существует успешный табличный вывод для исходной таблицы $T = \langle \emptyset, \Gamma \rangle;$
- 3. Не существует успешного табличного вывода для исходной таблицы $T = \langle \Gamma, \emptyset \rangle$;
- 4. Не существует успешного табличного вывода для исходной таблицы $T = \langle \emptyset, \Gamma \rangle$.

Упражнение 1.36. Пусть известно, что множество предложений Γ не имеет ни одной модели, предметной областью которой являются строки конечной длины, состоящие из 0 и 1. Может ли в этом случае множество предложений Γ быть непротиворечивым?

Упражнение 1.37. Докажите, что множество предложений Γ непротиворечиво тогда и только тогда, когда непротиворечиво каждое конечное подмножество Γ' , $\Gamma' \subseteq \Gamma$.

Упражнение 1.38. Пусть Γ — некоторое множество замкнутых формул логики предикатов. Верно ли, что Γ является непротиворечивым множеством тогда и только тогда всякая дизъюнкция вида $\neg \varphi_1 \lor \neg \varphi_1 \lor \cdots \lor \neg \varphi_n$, где $\varphi_1, \varphi_2, \ldots, \varphi_n$ — формулы из Γ , не является общезначимой?

Упражнение 1.39. Пусть известно, что Γ — это некоторое непустое множество логических следствий замкнутой формулы φ . Пусть также известно, что множество формул Γ не имеет ни одной модели с конечной или счетно-бесконечной областью интерпретации. Какие из приведенных ниже утверждений неверны и почему?

- 1. Формула φ не имеет ни одной модели с конечной или счетно-бесконечной областью интерпретации.
- 2. Формула φ не имеет вообще ни одной модели.
- 3. Любая формула ψ является логическим следствие формулы φ .

Упражнение 1.40. Докажите, что в том случае, когда семантическая таблица $T = \langle \Gamma | \Delta \rangle$ состоит из бескванторных формул, любой табличный вывод для T является конечным. Будет ли это утверждение верным и в том случае, когда все формулы таблицы T содержит в совокупности не более одного квантора?

1.5 Равносильные формулы и нормальные формы

Упражнение 1.41. Две формулы φ и ψ называются *равновыполнимыми*, если для любой интерпретации I формула φ выполнима в интерпретации I в том и только тоим случае, когда формула ψ выполнима в I. Докажите замкнутые формулы φ и ψ являются равновыполнимыми тогда и только тогда, когда они равносильны. Остаенется ли это утверждение справедливым и для произвольных формул?

Упражнение 1.42. Каково множество формул, равносильных общезначимой формуле φ ?

Упражнение 1.43. Используя правила равносильных преобразований формул, привести следующие формулы к предваренной нормальной форме.

```
 \exists x \forall y \ P(x,y) \ \& \ \forall x \exists y \ P(y,x);   \forall x \ ((\exists y \ P(y,x) \ \to \ \exists y \ P(x,y)) \ \to \ Q(x)) \ \to \ \exists x \ Q(x);   \neg \forall y (\exists x P(x,y) \to \ \forall u (R(y,u) \to \neg \forall z (P(z,u) \lor \neg R(z,y))));   \exists x \exists y (P(x,y) \to \ R(x)) \to \ \forall x (\neg \exists y P(x,y) \lor R(x));   \exists x \forall y \ (P(x,y) \to \ (\neg P(y,x) \to \ (P(x,x) \equiv \ P(y,y))));   \exists x (\forall x P(x,x) \lor \exists x \neg R(x)) \to \ \exists x (R(x) \to \ \exists y P(f(x),y)).
```

Упражнение 1.44. Предложите алгоритм, который для любой замкнутой формулы φ строит равносильную ПНФ за время O(N), где N — длина формулы φ .

Упражнение 1.45. Приведите пример замкнутой формулы, любая ПНФ которой имеет кванторную приставку, состоящую из чередующихся кванторов всеобщности и существования. Докажите, что никакие равносильные преобразования формул не могут устранить это чередование.

Упражнение 1.46. Существуют ли такие формулы, предваренные нормальные формы которых имеют разные кванторные приставки? Каким условиям должна удовлетворять замкнутая формула, для того чтобы любая ее ПНФ имела одну и ту же (с точностью до переименования переменных) кванторную приставку.

Упражнение 1.47. Известно, что замкнутая формула φ равносильна формуле ψ . Какие из приведенных ниже утверждений верны и почему?

- 1. Всякое логическое следствие формулы φ является логическим следствием формулы ψ .
- 2. Всякая модель формулы φ является моделью формулы ψ .
- 3. Формулы φ и ψ имеют одинаковую предваренную нормальную форму.
- 4. Формула φ общезначима тогда и только тогда, когда общезначима формула ψ .

Упражнение 1.48. Используя правило сколемизации, постройте сколемовские стандартные формы для следующих формул.

```
 \forall x \exists y \forall z \exists u R(x, y, z, u); 
 \neg \forall x (\exists y R(x, y) \rightarrow \forall z P(z, x)); 
 \neg \forall y (\exists x P(x, y) \rightarrow \forall u (R(y, u) \rightarrow \neg \forall z (P(z, u) \lor \neg R(z, y)))); 
 \exists x \exists y (P(x, y) \rightarrow R(x)) \rightarrow \forall x (\neg \exists y P(x, y) \lor R(x)); 
 \exists x \forall y (P(x, y) \rightarrow (\neg P(y, x) \rightarrow (P(x, x) \equiv P(y, y)))); 
 \exists x (\forall x P(x, x) \lor \exists x \neg R(x)) \rightarrow \exists x (R(x) \rightarrow \exists y P(f(x), y)).
```

Упражнение 1.49. Пусть известно, что формула φ_0 является ССФ для формул ψ_1 и ψ_2 . Верно ли, что в этом случае формулы ψ_1 и ψ_2 совершенно одинаковы?

Упражнение 1.50. Пусть известно, что формула φ представлена в ПНФ, а формула ψ является ССФ, соответствующей формуле φ . Какие из приведенных ниже утверждений верны и почему?

- 1. Если формула ψ невыполнима, то и формула φ также невыполнима, потому что....
- 2. Если формула ψ выполнима, то и формула φ также выполнима, потому что....
- 3. Если формула φ общезначима, то и формула ψ также общезначима, потому что....
- 4. Если формула ψ общезначима, то и формула φ также общезначима, потому что....

Упражнение 1.51. Пусть известно, что формула φ представлена в ПНФ, а формула ψ является ССФ, соответствующей формуле φ . Являются ли формулы φ и ψ равносильными? Является ли общезначимой формула $\psi \to \psi$? Является ли общезначимой формула $\psi \to \varphi$?

1.6 Эрбрановские интерпретации. Теорема Эрбрана

Упражнение 1.52. При каких условиях эрбрановский универсум сигнатуры σ является конечным множеством?

Упражнение 1.53. Верно ли, что всякая формула φ является общезначимой тогда и только тогда, когда φ истинна во всех эрбрановских интерпретациях?

Упражнение 1.54. Верно ли, что всякая формула φ сигнатуры σ является выполнимой тогда и только тогда, когда φ выполнима в некоторой эрбрановской интерпретации сигнатуры σ ?

Упражнение 1.55. Пусть φ — формула логики предикатов сигнатуры σ , представленная в сколемовской стандартной форме. Какие из приведенных ниже утверждений верны и почему?

- 1. Если формула φ выполнима, то φ выполнима хотя бы в одной эрбрановской интерпретации сигнатуры σ ,
- 2. Если формула φ выполнима хотя бы в одной эрбрановской интерпретации сигнатуры σ , то формула φ выполнима.
- 3. Если формула φ выполнима в каждой эрбрановской интерпретации сигнатуры σ , то формула φ общезначима.
- 4. Если формула φ не имеет эрбрановских моделей, то формула φ не имеет никаких моделей.

Упражнение 1.56. Каждая эрбрановская интерпретация I сигнатуры полностью определяется множеством всех тех основных атомов сигнатуры σ , которые выполняются в интерпретации I. В последующих упражнениях будет использоваться теоретико-множественный способ представления эрбрановских интерпретаций, при котором эрбрановская интерпретация I отождествляется c тем множеством основных атомов, которые в ней выполняются, c т. e.

$$I = \{A : A \in B_{\sigma}, I \models A\}.$$

Предположим, что замкнутая формула φ имеет эрбрановские модели I_1 и I_2 . Верно ли, что интерпретации $I_1 \cup I_2$ и $I_1 \cap I_2$ будут также являться эрбрановскими моделями для формулы φ ?

Упражнение 1.57. Предположим, что замкнутая формула ψ является сколемовской стандартной формой и имеет эрбрановские модели I_1 и I_2 . Верно ли, что интерпретации $I_1 \cup I_2$ и $I_1 \cap I_2$ будут также являться эрбрановскими моделями для формулы ψ ?

Упражнение 1.58. При каких условия обе эрбрановские интерпретации B_H и \emptyset будут также являться эрбрановскими моделями для системы дизъюнктов S?

Упражнение 1.59. Пусть известно, что $\varphi(x_1, x_2, \dots, x_n)$ — бескванторная формула, в которой не содержатся ни константы, ни функциональные символы. Докажите, что

- 1. формула $\forall x_1 \forall x_2 \dots \forall x_n \ \varphi(x_1, x_2, \dots, x_n)$ общезначима тогда и только тогда, когда она истинна в любой интерпретации, предметная область которой состоит из n элементов;
- 2. формула $\exists x_1 \exists x_2 \dots \exists x_n \ \varphi(x_1, x_2, \dots, x_n)$ общезначима тогда и только тогда, когда она истинна в любой интерпретации, предметная область которой состоит из одного элемента

Упражнение 1.60. Отыщите наименьшее противоречивое множество основных примеров для следующих систем дизъюнктов (переменные обозначены заглавными буквами, а константы и функциональные символы — прописными):

1.
$$S_1 = \{ \neg P(X) \lor Q(f(X), X), P(g(b)), \neg Q(Y, Z) \};$$

2.
$$S_2 = \{ P(X, a, f(X, b)) \lor \neg Q(Y, f(b, Y)), \neg P(f(Y), Z, Y), Q(X, Y) \lor Q(a, Z) \}.$$

Упражнение 1.61. При помощи правила резолюции докажите противоречивость систем основных дизъюнктов

1.
$$S_1 = \{ \neg R, \neg Q, \neg P \lor R, P \lor Q \lor R \};$$

2.
$$S_2 = \{ P \lor Q, \neg P \lor R, \neg P \lor Q, \neg R \}.$$

1.7 Задача унификации

Упражнение 1.62. Докажите, что подстановка $\theta = \{x_1/t_1, x_2/t_2, \dots, x_n/t_n\}$ является переименованием тогда и только тогда, когда $\{t_1, t_2, \dots, t_n\} = \{x_1, x_2, \dots, x_n\}$.

Упражнение 1.63. Вычислите композицию подстановок $\theta_1\theta_2$, где

1.
$$\theta_1 = \{x/f(x), y/g(x, z), u/v, v/f(c)\}, \ \theta_2 = \{x/f(y), y/c, z/g(y, v), v/u\};$$

2.
$$\theta_1 = \{x/y\}, \ \theta_2 = \{y/z\} \ \{z/x\} \{x/y\}.$$

Упражнение 1.64.

- 1. Докажите, что операция композиции подстановок обладает свойством ассоциативности, т. е. $\theta_1(\theta_2\theta_3)=(\theta_1\theta_2)\theta_3$.
- 2. Докажите, что для любой подстановки θ верны равенства $\theta = \theta \varepsilon = \varepsilon \theta$.
- 3. Подстановка θ называется *обратимой*, если существует такая подстановка η , для которой справедливо равенство $\theta \eta = \varepsilon$. Докажите, что подстановка θ обратима тогда и только тогда, когда θ переименование.

Упражнение 1.65. Подстановка θ называется *идемпотентной*, если она удовлетворяет равенству $\theta\theta=\theta$. Докажите, что подстановка $\{x_1,x_2,\ldots,x_n\}$ является идемпотентной тогда и только тогда, когда $\{x_1,x_2,\ldots,x_n\}\cap\bigcup_{i=1}^n Var_{t_i}=\emptyset$. Является ли композиция двух идемпотентных подстановок идемпотентной подстановкой?

Упражнение 1.66. Определим на множестве конечных подстановок Subst отношение сравнения \preceq следующим образом: подстановка η является npumepom подстановки θ (обозначается $\eta \preceq \theta$), если существует такая подстановка ρ , для которой выполняется равенство $\eta = \theta \rho$. Какими из перечисленных ниже свойств обладает отношение \preceq :

- 1. транзитивность: если $\theta_1 \leq \theta_2$ и $\theta_2 \leq \theta_3$, то $\theta_1 \leq \theta_3$;
- 2. рефлексивность: $\theta \leq \theta$;
- 3. антисимметричность: если $\theta_1 \leq \theta_2$ и $\theta_1 \leq \theta_2$, то $\theta_1 = \theta_2$;
- 4. существовует такой наибольший элемент θ_{max} , что $\eta \leq \theta_{max}$ для любой подстановки η ;
- 5. существовует такой наименьший элемент θ_{min} , что $\theta_{min} \preceq \eta$ для любой подстановки η .

Упражнение 1.67. Найти наиболее общий унификатор следующих пар атомарных формул (заглавными буквами обозначены переменные, а прописными — константы и функциональные символы):

```
\begin{array}{lll} P(c,X,f(X)), & P(c,Y,Y); \\ P(f(X,Y),Z,h(Z,Y)), & P(f(Y,X),g(Y),V); \\ P(f(Y),W,g(Z)), & P(U,U,V); \\ P(f(Y),W,g(Z)), & P(V,U,V); \\ R(Z,f(X,b,Z)), & R(h(X),f(g(a),Y,Z)); \\ P(X,f(Y),h(Z,X)), & P(f(Y),X,h(f(Y),f(Z))); \\ P(a,X,h(g(Z)), & P(Z,h(Y),h(Y)); \\ P(X_1,X_2,X_3,X_4), & P(f(c,c),f(X_1,X_1),f(X_2,X_2),f(X_3,X_3)). \end{array}
```

Упражнение 1.68. При каких условиях $HOY(E_1, E_2)$ является конечным множеством?

Упражнение 1.69. При каких условиях каждый унификатор двух выражений E_1 и E_2 является наиболее общим унификатором?

Упражнение 1.70. Пусть θ_1 и θ_2 — две подстановки, и при этом $\theta_1 \in HOY(E_1, E_2)$. Докажите, что $\theta_2 \in HOY(E_1, E_2)$ тогда и только тогда, когда существует такое переименование η , для которого справедливо равенство $\theta_2 = \theta_1 \eta$. При каких условиях $HOY(E_1, E_2)$ является конечным множеством?

Упражнение 1.71. Докажите, что $HOY(E_1, E_2) = \emptyset$ тогда и только тогда, когда $HOY(E_1\theta, E_2\eta) = \emptyset$ для любых примеров $E_1\theta$, $E_2\eta$ логических выражений E_1 и E_2 . Приведите пример двух неунифицируемых выражений E_1 и E_2 , имеющих унифицируемые примеры $E_1\theta$, $E_2\eta$.

Упражнение 1.72. Докажите, что если логические выражения E_1 и E_2 неунифицируемы и при этом $Var_{E_1} \cap Var_{E_2} = \emptyset$, то и любые примеры $E_1\theta$, $E_2\eta$ логических выражений E_1 и E_2 также неунифицируемы.

Упражнение 1.73. Докажите, что любая подстановка, которую вычисляет алгоритм унификации Мартелли-Монтанари, является идемпотентной (см. упражнение 1.65). Верно ли, что любой наиболее общий унификатор двух атомов A_1 и A_2 является идемпотентной подстановкой?

Упражнение 1.74. Подстановка θ называется унификатором конечного множества атомов $M = \{A_1, A_2, \dots, A_n\}$, если она удовлетворяет равенству $A_1\theta = A_2\theta = \dots = A_n\theta$. Унификатор θ множества атомов M называется наиболее общим унификатором, если любой унификатор множества атомов M является примером θ . Предложите алгоритм вычисления наиболее общего унификатора множества атомов M.

Упражнение 1.75. Вычислите наиболее общий унификатор следующего множества атомов:

$$M = \{ R(h(X), Y, Z), R(Y, h(Z), h(U)), R(h(h(U)), h(c), X) \}.$$

Упражнение 1.76. Пусть $M = \{A_1, A_2, \dots, A_n\}$ — произвольное непустое множество атомов. Докажите, что в M существует такая пара атомов A_i и A_j обладающая следующим свойством: всякая подстановка θ является унификатором множества атомов M тогда и только тогда, когда она является унификатором пары атомов A_i и A_j .

Упражнение 1.77. Предложите алгоритм вычисления наиболее общего унификатора двух бескванторных формул логики предикатов $\varphi(x_1, x_2, \dots, x_n)$ и $\psi(x_1, x_2, \dots, x_n)$.

1.8 Метод резолюций в логике предикатов

Упражнение 1.78. Постройте всевозможные резольвенты следующих пар дизъюнктов (заглавными буквами обозначены предикатные символы и переменные, а строчными — константы и функциональные символы).

- 1. $D_1 = \neg P(f(X_1, Y_1), Z, h(Z_1, Y_1)) \lor R(Z_1, V_1),$ $D_2 = Q(X_2) \lor P(f(Y_2, X_2), g(Y_2), V_2);$
- 2. $D_1 = P(X_1, Y_1, h(Y_1, X_1)) \lor R(Y_1, f(X_1)),$ $D_2 = \neg P(X_2, f(X_2), h(X_2, Y_2)) \lor \neg P(Y_2, g(X_2), h(Y_2, Y_2));$
- 3. $D_1 = \neg R(X_1, Y_1, X_1) \lor \neg P(X_1, Y_1, Y_1) \lor R(X_2, X_2, X_2),$ $D_2 = R(g(X_2, Y_2), X_2, Y_2) \lor R(c, Z_2, f(Z_2, Z_2));$
- 4. $D_1 = \neg Q(X,Y) \lor \neg Q(Y,X),$ $D_2 = Q(U,V) \lor Q(V,U).$

Упражнение 1.79. Постройте склейки следующих дизъюнктов.

- 1. $\neg P(f(X)) \lor R(Z,V) \lor P(X);$
- 2. $P(X) \vee Q(f(X)) \vee P(a) \vee Q(f(a));$
- 3. $\neg Q(X, f(X)) \lor \neg Q(Z, Z) \lor \neg Q(a, Z)$.

Упражнение 1.80. Построив резолютивный вывод, доказать противоречивость следующих множеств дизъюнктов.

1.
$$S = \{D_1, D_2, D_3, D_4, D_5\}$$

$$D_1 = P(X, f(X)),$$

$$D_2 = R(Y, Z) \vee \neg P(Y, f(a)),$$

$$D_3 = \neg R(c, X),$$

$$D_4 = R(X, Y) \vee R(Z, f(Z)) \vee \neg P(Z, Y),$$

$$D_5 = P(X, X).$$

2. $S = \{D_1, D_2, D_3, D_4, D_5\}$

$$\begin{array}{lll} D_1 &=& \neg E(b,U), \\ D_2 &=& H(U,g(U)), \\ D_3 &=& H(U,U), \\ D_4 &=& E(U,V) \vee \neg H(U,g(a)), \\ D_5 &=& E(U,V) \vee E(Z,g(Z)) \vee \neg H(Z,V). \end{array}$$

3. $S = \{D_1, D_2, D_3, D_4, D_5, D_6, D_7\}$

$$\begin{array}{lll} D_1 &=& E(x) \vee V(y) \vee C(f(x)), \\ D_2 &=& E(x) \vee S(x,f(x)), \\ D_3 &=& \neg E(a), \\ D_4 &=& P(a), \\ D_5 &=& P(f(x)) \vee \neg S(y,x), \\ D_6 &=& \neg P(x) \vee \neg V(g(x)) \vee \neg V(y), \\ D_7 &=& \neg P(x) \vee \neg C(y); \end{array}$$

4. $S = \{D_1, D_2, D_3, D_4\}$

$$\begin{array}{lll} D_1 &=& P(y,f(x)), \\ D_2 &=& \neg Q(y) \vee \neg Q(z) \vee \neg P(y,f(z)) \vee Q(v), \\ D_3 &=& Q(b), \\ D_4 &=& \neg Q(a); \end{array}$$

Упражнение 1.81. Используя метод резолюций, обосновать общезначимость следующих формул.

- 1. $\exists x \ P(x) \rightarrow \neg \forall x \ \neg P(x);$
- 2. $\exists x \ \forall y \ R(x,y) \rightarrow \forall y \ \exists x \ R(x,y)$;

```
3. \forall x \ (P(x) \rightarrow \exists y \ R(x, f(y))) \rightarrow (\exists x \ \neg P(x) \lor \forall x \exists z R(x, z));
```

- 4. $\forall x \; \exists y \; \forall z \; (P(x,y) \rightarrow P(y,z));$
- 5. $\exists x \ \forall y \ \exists z \ (P(x,y) \rightarrow P(y,z));$
- 6. $\exists x \forall y (\forall z (P(y,z) \rightarrow P(x,z)) \rightarrow (P(x,x) \rightarrow P(y,x)));$
- 7. $\exists x \exists y (P(x,y) \rightarrow R(x)) \rightarrow \forall x (\neg \exists y P(x,y) \lor R(x));$
- 8. $\forall x (P(x,x) \rightarrow (R(x) \rightarrow \forall x (\forall x P(x,x) \& R(x))));$
- 9. $\exists x((\forall y P(x,y) \lor \exists x R(x)) \rightarrow (\exists x P(x,x) \lor R(x)));$
- 10. $\exists x (\exists y \neg P(x,y) \rightarrow \forall x R(x)) \rightarrow \forall x (R(x) \lor \exists x P(x,f(x)));$
- 11. $\forall x (\forall y \exists v \forall u ((A(u,v) \rightarrow B(y,u)) \& (\neg \exists w A(w,u) \rightarrow \forall w A(w,v))) \rightarrow \exists y B(x,y));$
- 12. $\forall x \exists u (\exists v \forall y ((E(u,y) \rightarrow H(y,v)) \& \exists w \forall x (H(w,y) \rightarrow \neg H(x,v))) \rightarrow \exists y \neg E(x,y)).$

Упражнение 1.82. Докажите, что резолютивный вывод обладает *переключательным свойством*, которое формулируется так (см. рис. 1.1).

Предположим, что дизъюнкты D_1 , D_2 имеют резольвенту D_0 , и дизъюнкты D_0 и D_3 имеют резольвенту D. Тогда один из дизъюнктов D_i , $i \in \{1,2\}$, и дизъюнкт D_3 имеют резольвенту D'_0 , а дизъюнкты D'_0 и D_{3-i} имеют резольвенту D', которая является вариантом дизъюнкта D.

Упражнение 1.83. Введя необходимые предикаты, запишите формулы логики предикатов, выражающие следующие суждения:

«Если в стране есть хоть какие-нибудь граждане, то все политики являются гражданами этой страны».

«А если где-то в мире и есть честные люди, то все граждане страны — честные люди».

Используя метод резолюций, докажите, что из этих утверждений следуют выводы:

- 1. «Если среди граждан страны есть честные люди, то все политики честные».
- 2. «Если среди политиков найдется хоть один бесчестный человек, то во всем мире больше не осталось честных людей».

Упражнение 1.84. Рассмотрим ориентированный граф Γ с множеством вершин a, b, c, d, e и множеством дуг $\langle a, b \rangle$, $\langle a, e \rangle$, $\langle b, a \rangle$, $\langle d, b \rangle$, $\langle e, c \rangle$, $\langle e, c \rangle$, $\langle c, d \rangle$. Этот граф полностью определется следующим списком атомарных формул:

$$\begin{array}{rcl} \varphi_1 & = & A(b,e), \\ \varphi_2 & = & A(a,e), \\ \varphi_3 & = & A(b,a), \\ \varphi_4 & = & A(d,b), \\ \varphi_5 & = & A(e,c), \\ \varphi_6 & = & A(c,d). \end{array}$$

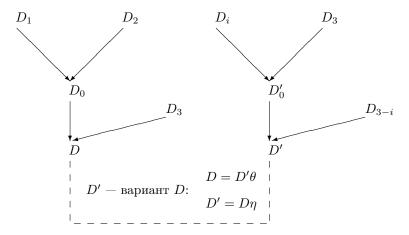


Рис. 1.1. Переключательное свойство резолютивного вывода

Вершина v ориентированного графа считается достижимой из вершины u, если в этом графе существует ориентированный путь (маршрут) из вершины u в вершину v. Отношение достижимости $E^{(2)}$ описывается следующими формулами:

```
\begin{array}{rcl} \psi_1 & = & \forall X \ E(X,X), \\ \psi_2 & = & \forall X \forall Y \ (A(X,Y) \rightarrow E(X,Y)), \\ \psi_3 & = & \forall X \forall Y \forall Z \ (E(X,Y) \ \& \ E(Y,Z) \rightarrow \ E(X,Z)). \end{array}
```

- 1. Сформулируйте в терминах логического следствия задачу проверки достижимости в графе Γ вершины d из вершины a. Решите эту задачу при помощи метода резолюций.
- 2. Ориентированный граф называется *сильно связным*, если для любой пары его вершин u,v вершина v достижима из вершины u. Сформулируйте в терминах логического следствия задачу проверки сильной связности графа Γ . Решите эту задачу при помощи метода резолюций.

Упражнение 1.85. Граф называется *двудольным*, если множество всех его вершины можно разбить на два таких класса, что никакие две вершины из одного и того же класса не соединены дугой.

1. Введя вспомогательные предикаты, запишите формулу выражающую свойство двудольности графа.

2. Докажите при помощи метода резолюций, что граф Γ из упражнения 1.84 не является двудольным.

Упражнение 1.86. Граф называется 3-раскрашиваемым, если множество всех его вершины можно разбить на три таких класса, что никакие две вершины из одного и того же класса не соединены дугой.

- 1. Введя вспомогательные предикаты, запишите формулу выражающую свойство 3-раскрашиваемости графа.
- 2. Докажите при помощи метода резолюций, что граф Г не является 3-раскрашиваемым.

1.9 Полнота метода резолюций

Упражнение 1.87. Пусть задано некоторое непустое множество дизъюнктов S_0 . Пусть S_1 — это множество всех формул, резолютивно выводимых из множества дизъюнктов S_0 . Какие из приведенных ниже утверждений всегда справедливы и почему?

- 1. Если каждый дизъюнкт множества S_0 выполним, то и каждый дизъюнкт множества S_1 выполним, потому что....
- 2. Если каждый дизъюнкт множества S_1 выполним, то множество дизъюнктов S_0 имеет модель, потому что....
- 3. Если множество дизъюнктов S_0 имеет модель, то множество дизъюнктов S_1 имеет модель, потому что....

Упражнение 1.88. Останется ли верной теорема полноты резолютивного вывода в том случае, если при построении вывода не пользоваться правилом склейки?

Упражнение 1.89. Предположим, что в правило резолюции было внесено следующее изменение: резольвентой дизъюнктов $D_1 = D_1' \lor L_1$ и $D_2 = D_2' \lor \neg L_2$ объявляется всякий дизъюнкт $D_0 = (D_1' \lor D_2')\eta$, где η — некоторый унификатор (необязательно наиболее общий) литер L_1 и L_2 . Какие из приведенных ниже утверждений будут справедливы и почему?

- 1. После такого изменения и теорема корректности резолютивного вывода и теорема полноты резолютивного вывода уже будут неверны, потому что...
- 2. После такого изменения теорема корректности резолютивного вывода остается верной, а теорема полноты резолютивного вывода уже будет неверна, потому что...
- 3. После такого изменения теорема полноты резолютивного вывода остается верной, а теорема корректности резолютивного вывода уже будет неверна, потому что...
- 4. После такого изменения и теорема корректности резолютивного вывода и теорема полноты резолютивного вывода остаются верными, потому что...

Упражнение 1.90. Известно, что из множества непустых дизъюнктов $S = \{D_1, D_2, \dots, D_N\}$ можно построить резолютивный вывод пустого дизъюнкта \square . Какие из приведенных ниже утверждений всегда справедливы и почему?

- 1. Существует успешный табличный вывод для исходной таблицы $T = \langle \emptyset, \{D_1 \& D_2 \& \dots \& D_N\} \rangle$, потому что....
- 2. Существует успешный табличный вывод для исходной таблицы $T = \langle \{D_1 \& D_2 \& \dots \& D_N\}, \emptyset \rangle$, потому что....
- 3. Существует успешный табличный вывод для исходной таблицы $T = \langle \emptyset, \{D_1 \lor D_2 \lor \cdots \lor D_N \} \rangle$, потому что....
- 4. Существует успешный табличный вывод для исходной таблицы $T = \langle \{D_1 \lor D_2 \lor \cdots \lor D_N\}, \emptyset \rangle$, потому что....

Упражнение 1.91. Пусть S - это некоторое множество дизъюнктов, а [S] - это множество всех основных примеров дизъюнктов из множества S. Какие из приведенных ниже утверждений всегда справедливы и почему?

- 1. Если дизъюнкт D резолютивно выводим из множества дизъюнктов S, то этот же дизъюнкт D резолютивно выводим из множества основных примеров дизъюнктов [S], потому что...
- 2. Если дизъюнкт D резолютивно выводим из множества основных примеров дизъюнктов [S], то этот же дизъюнкт D резолютивно выводим из множества дизъюнктов S, потому что...
- 3. Если эрбрановская интерпретация I является моделью для множества дизъюнктов S, то эта же эрбрановская интерпретация I является моделью для множества основных примеров дизъюнктов [S], потому что...
- 4. Если эрбрановская интерпретация I является моделью для множества основных примеров дизъюнктов [S], то эта же эрбрановская интерпретация I является моделью для множества дизъюнктов S, потому что...

Упражнение 1.92. Предположим, что из системы дизъюнктов S можно резолютивно вывести дизъюнкт $P \vee \neg P$. Какие из приведенных ниже утверждений будут всегда верны и почему?

- 1. В системе дизъюнктов S есть противоречивый дизъюнкт, потому что...
- 2. Система дизъюнктов S непротиворечива, потому что...
- 3. Система дизъюнктов S противоречива, потому что...
- 4. Такой резольвенты вывести из системы дизъюнктов S невозможно, потому что. . .

1.10 Хорновские логические программы. Декларативная и операционная семантики.

Упражнение 1.93. Следующие основные свойства и отношения

- мужчина(X),
- женщина(Y),
- мать(X,Y),
- отец(X,Y),
- супруги(X,Y)

описываются фактами хорновской логической программы, например,

```
мужчина (adam) \leftarrow;
женщина (eve) \leftarrow;
отец (adam, abel) \leftarrow;
мать (eve, cain) \leftarrow;
```

Продолжите эту логическую программу, создав подходящие программные утверждения, описывающие следующие родственные свойства и отношения:

- 1. родитель(X,Y);
- 2. дед(X, Y);
- 3. быть_отцом(X);
- 4. брат(X, Y);
- 5. свояченица(X, Y);
- 6. предок(X,Y);
- 7. потомок(X,Y);
- 8. родственник(X, Y);

Упражнение 1.94. Создайте логические программы, описывающие следующие свойства термов:

```
list(X) - "Y является списком". elem(X,Y) - "X является элементом списка Y",
```

Выяснить, каково множество правильных ответов на следующие запросы, обращенные κ построенным программам:

```
1. ? list(a.b.c.nil)
```

```
    ? list(a.X.nil)
    ? list(a.b)
    ? list(a.Y)
    ? elem(b,a.b.c.nil)
    ? elem(X,a.b.c.nil)
    ? elem(a,X)
```

Упражнение 1.95. Постройте SLD-резолютивные вычисления для каждого из запросов, приведенных в упражнении 1.94, обращенных к программам, описывющим предикаты list и elem.

Упражнение 1.96. Постройте всевозможные SLD-резолютивные вычисления для запроса G=? R(Y), P(Z), обращенного к программе \mathcal{P} , выделяя в каждом целевом утверждении самую левую подцель. Каково множество вычисленных ответов на запрос G к программе \mathcal{P} ?

```
\mathcal{P}: R(Y) \leftarrow P(Y), Q(Y);
P(a) \leftarrow ;
P(b) \leftarrow ;
Q(a) \leftarrow ;
Q(f(X)) \leftarrow Q(X);
```

Упражнение 1.97. Построить логические программы, описывающие следующие свойства и отношения на множестве списков.

- 1. head(L, X) : Заголовком списка L является элемент X;
- 2. tail(L, X): Хвостом списка L является список X;
- 3. prefix(L, X): Префиксом (начальным подсписком) списка L является список X;
- 4. suffix(L,X): Суффиксом (заключительным подсписком) списка L является список X;
- 5. sublist(L, X): Список X является подсписком списка L;
- $6. \ equal(X,Y):$ Списки X и Y совпадают;
- 7. $equal_length(X,Y)$: Списки X и Y имеют одинаковую длину;
- 8. $nonequal_length(X,Y)$: Списки X и Y разную длину;
- 9. less(X,Y): Длина списка X меньше длины списка Y;
- 10. subset(X,Y): Список X состоит только из элементов, содержащихся в списке Y;

- 11. concat(X,Y,Z): Список X является конкатенацией (последовательным соединением) списков Y и Z:
- 12. reverse(X,Y): Список X является обращением списка Y, т. е. X состоит из тех же элементов, что и список Y, но в списке X эти элементы следуют друг за другом в обратном порядке;
- 13. palindrome(X,Y): Список X является палиндромом Y, т. е. X одинаково прочитывается слева направо и справо налево;
- 14. delete(X,Y): Список X образован из списка Y удалением одного или нескольких подряд идущих элементов;
- 15. subsequence(X,Y): Последовательность X является подпоследовательностью последовательности Y;
- 16. summ(X, Y, Z) : Длина списка X равна сумме длин списков Y и Z;
- 17. product(X, Y, Z): Длина списка X равна произведению длин списков Y и Z;
- 18. differ(X,Y,Z): Длина списка X равна абсолютной разности длин списков Y и Z;
- 19. multiple(X,Y): Длина списка X кратна длине списка Y;
- 20. nonmultiple(X,Y): Длина списка X не кратна длине списка Y;
- 21. period(X,Y): Список X является периодической последовательностью, полученной в результате многократного повторения списка Y;
- 22. stuttering(X): Список X образован в результате неоднократного повторения некоторого другого списка;
- 23. power2(X): Длина списка X является степенью числа 2;
- 24. prime(X) : Длина списка X является простым числом;
- 25. progression(X) : Все элементы списка X это списки, длины которых (в порядке следования элементов в списке X) образуют арифметическую прогрессию;

Пусть $\sigma = \langle Const, Func, Pred \rangle$ условимся обозначать H_{σ} эрбрановский универсум (множество основных термов) сигнатуры σ , а B_{σ} — эрбрановский базис сигнатуры (множество основных атомов) σ . Тогда каждая эрбрановская интерпретация I сигнатуры полностью определяется множеством всех тех основных атомов сигнатуры σ , которые выполняются в интерпретации I. В последующих упражнениях будет использоваться теоретико-множественный способ представления эрбрановских интерпретаций, при котором эрбрановская интерпретация I отождествляется c тем множеством основных атомов, которые в ней выполняются, c. c.

$$I = \{A : A \in B_{\sigma}, I \models A\}.$$

Тогда I называется эрбрановской моделью для хорновской логической программы \mathcal{P} , если для любого программного утверждения $D,\ D\in\mathcal{P}$, представленного в виде логической формулы, верно

$$I \models D$$

Для обозначения того факта, что эрбрановская интерпретация I является моделью для программы \mathcal{P} будет использоваться сокращенная запись $I \models \mathcal{P}$.

Упражнение 1.98. Докажите, что H-интерпретация I является моделью для хорновской логической программы \mathcal{P} тогда и только тогда, когда для любого основного примера программного утверждения $D' = A'_0 \leftarrow A'_1, \ldots, A'_n, \ D' \in [\mathcal{P}]$ верно

$$\{A'_1,\ldots,A'_n\}\subseteq I \Rightarrow A'_0\in I.$$

Упражнение 1.99. Докажите, что каждая хорновская логическая программа \mathcal{P} имеет хотя бы одну эрбрановскую модель.

Упражнение 1.100. Докажите, что H-интерпретация B_H является моделью для любой хорновской логической программы \mathcal{P} . Приведите пример программы, моделью которой является интерпретация $I=\emptyset$. Как должна быть устроена программа \mathcal{P} для того, чтобы интерпретация $I=\emptyset$ была ее моделью?

Упражнение 1.101. Докажите, что если H-интерпретации I_1 и I_2 являются моделями для хорновской логической программы \mathcal{P} , то H-интерпретация $I_0 = I_1 \cap I_2$ также является моделью для \mathcal{P} .

Упражнение 1.102. Рассмотрим множество $\mathcal{I}_{\mathcal{P}}$ всех эрбрановских моделей для логической программы \mathcal{P} . Докажите, что H-интерпретация $M_{\mathcal{P}} = \bigcap_{I \in \mathcal{I}_{\mathcal{P}}} I$ является наименьшей (по отношению теоретико-множественного включения) моделью для программы \mathcal{P} .

Упражнение 1.103. Рассмотрим множество $\mathcal{I}_{\mathcal{P}}$ всех эрбрановских моделей для огической программы \mathcal{P} . Докажите, что H-интерпретация $M_{\mathcal{P}} = \bigcap_{I \in \mathcal{I}_{\mathcal{P}}} I$ является наименьшей (по отношению теоретико-множественного включения) моделью для программы \mathcal{P} .

Упражнение 1.104. Докажите, что $M_{\mathcal{P}} = \emptyset$ тогда и только тогда, когда хорновская логическая программа \mathcal{P} не содержит ни одного факта.

Упражнение 1.105. Докажите, что для любого основного атома A_0 и для любой хорновской логической программы $\mathcal P$ справедливо следующее соотношение:

$$\mathcal{P} \models A_0 \iff A_0 \in M_{\mathcal{P}}.$$

Упражнение 1.106. Пусть t_1, t_2, \ldots, t_k — это некоторый набор основных термов. Докажите, что подстановка $\theta = \{Y_1/t_1, \ldots, Y_k/t_k\}$ является правильным ответом на запрос $G = ?C_1, C_2, \ldots, C_m$ к хорновской логической программе $\mathcal P$ тогда и только тогда, когда $\{C_1\theta, \ldots, C_m\theta\} \subseteq M_{\mathcal P}$.

Упражнение 1.107. Докажите, что для любых хорновских логических программ \mathcal{P}_1 и \mathcal{P}_2 справедливо включение

$$M_{\mathcal{P}_1} \cup M_{\mathcal{P}_2} \subseteq M_{\mathcal{P}_1 \cup \mathcal{P}_2}$$
.

Приведите пример программ \mathcal{P}_1 и \mathcal{P}_2 , для которых указанное включение является строгим. Каким из трех теоретико-множественных отношений \subseteq , =, \supseteq связаны эрбрановские интерпретации $M_{\mathcal{P}_1} \cap M_{\mathcal{P}_2}$ и $M_{\mathcal{P}_1 \cap \mathcal{P}_2}$?

1.11 Теоремы корректности и полноты для хорновских логических программ.

Упражнение 1.108. Сохранят ли справедливость теоремы корректности и полноты для хорновских логических программ, если в определении правила SLD-резолюции вместо наиболее общего унификатора разрешить использовать произвольный унификатор выделенной подцели запроса и заголовка активизированного программного утверждения?

Упражнение 1.109. Оператором непосредственного следования $T_{\mathcal{P}}$ для хорновской логической программы \mathcal{P} называется отображение

$$T_{\mathcal{P}}: 2^{B_{\mathcal{P}}} \rightarrow 2^{B_{\mathcal{P}}},$$

сопоставляющее каждой эрбрановской интерпретации $I, I \subseteq B_{\mathcal{P}}$, эрбрановскую интерпретацию $I' = T_{\mathcal{P}}(I), \ I' \subseteq B_{\mathcal{P}}$, удовлетворяющую следующему соотношению:

$$I' = \{A_0 : D = A_0 \leftarrow A_1, \dots, A_k \in [\mathcal{P}], \{A_1, \dots, A_k\} \subseteq I\}.$$

Докажите, что для любой эрбрановской модели I для хорновской логической программы \mathcal{P} интерпретация $T_{\mathcal{P}}(I)$ также является моделью для программы \mathcal{P} .

Упражнение 1.110. Пусть задана хорновская логическая программа

$$\mathcal{P}: P(f(X)) \leftarrow P(X);$$

сигнатуры $\Sigma = \langle Const = \{c\}, Func = \{f\}, Pred = \{P\} \rangle$, состоящая из одного-единственного программного утверждения.

Какие эрбрановские интерпретации являются значениями оператора непосредственного следования $T_{\mathcal{P}}(\emptyset)$ и $T_{\mathcal{P}}(B_{\mathcal{P}}$?

Упражнение 1.111. Пусть задана хорновская логическая программа

```
\mathcal{P}: P(X) \leftarrow R(X), P(c);
R(b) \leftarrow P(a);
R(a);
P(c);
```

Вычислите значения оператора непосредственного следования $T_{\mathcal{P}}(\emptyset), T_{\mathcal{P}}(T_{\mathcal{P}}(\emptyset)), T_{\mathcal{P}}(T_{\mathcal{P}}(\emptyset)))$

Упражнение 1.112. Докажите, что для любой хорновской логической программы \mathcal{P} оператор непосредственного следования $T_{\mathcal{P}}$ обладает свойством монотонности, т. е. для любых эрбрановских интерпретаций $I,\ J$ справедливо соотношение

$$I \subset J \implies T_{\mathcal{P}}(I) \subset T_{\mathcal{P}}(J)$$
.

Упражнение 1.113. Докажите, что эрбрановская интерпретация I является моделью для хорновской логической программы \mathcal{P} в том и только том случае, когда $T_{\mathcal{P}}(I) \subseteq I$.

Упражнение 1.114. Условимся n-кратную композицию оператора непосредственного следования обозначать $T^n_{\mathcal{P}}$, т. е. $T^n_{\mathcal{P}}(I) = \underbrace{T_{\mathcal{P}}(T_{\mathcal{P}}(\dots T_{\mathcal{P}}(I)\dots))}_{n \text{ pas}}$.

Докажите, что для любой хорновской логической программы ${\mathcal P}$ имеет место следующая цепочка включений

$$T^0_{\mathcal{P}}(\emptyset) \subseteq T^1_{\mathcal{P}}(\emptyset) \subseteq T^2_{\mathcal{P}}(\emptyset) \subseteq \cdots \subseteq T^i_{\mathcal{P}}(\emptyset) \subseteq T^{i+1}_{\mathcal{P}}(\emptyset) \subseteq \ldots \subseteq M_{\mathcal{P}}$$
.

Упражнение 1.115. Докажите, что эрбрановская интерпретация $\bigcup_{i=0}^{\infty} T_{\mathcal{P}}^i(\emptyset)$ является моделью для хорновской логической программы \mathcal{P} .

Упражнение 1.116. Докажите, что для любой хорновской логической программы $\mathcal P$ имеет место равенство $M_{\mathcal P}=\bigcup_{i=0}^\infty T^i_{\mathcal P}(\emptyset).$

Упражнение 1.117. Докажите, что для любой хорновской логической программы \mathcal{P} и любого основного атома A запрос ?A к программе \mathcal{P} имеет успешное SLD-резолютивное вычисление тогда и только тогда, когда $A \in M_{\mathcal{P}}$.

Упражнение 1.118. Докажите, что для любой хорновской логической программы \mathcal{P} запрос $G=?C_1,C_2,\ldots,C_n$ с множеством целевых переменных Y_1,Y_2,\ldots,Y_m , обращенный к программе \mathcal{P} имеет хотя бы одно успешное SLD-резолютивное вычисление в том и только том случае, когда имеет место логическое следствие $\mathcal{P}\models\exists Y_1\exists Y_2\ldots\exists Y_m(C_1\&C_2\&\ldots\&C_n)$.

Упражнение 1.119. Верно ли, что для любой хорновской логической программы \mathcal{P} и атома A логическое следствие $\mathcal{P} \models \forall Y_1 \forall Y_2 \dots \forall Y_m A$ имеет место тогда и только тогда, когда выполняется включение $[A] \subseteq M_{\mathcal{P}}$?

1.12 Стратегии вычисления логических программ.

Упражнение 1.120. Постройте дерево SLD-резолютивных вычислений для запроса G=? P(X,b), обращенного к программе \mathcal{P} , используя стандартное правило выбора подцелей.

$$\mathcal{P}: P(X,Z) \leftarrow Q(X,Y), P(Y,Z);$$

$$P(X,X) \leftarrow ;$$

$$Q(a,b) \leftarrow ;$$

Предположим, что в теле первого программного утверждения $P(X,Z) \leftarrow Q(X,Y), P(Y,Z)$; программист поменял местами атомы Q(X,Y) и P(Y,Z). Как изменится в этом случае дерево SLD-резолютивных вычислений запроса G?

Упражнение 1.121. Постройте дерево SLD-резолютивных вычислений для запроса G=? R(Y), P(Z), обращенного к программе \mathcal{P} , используя стандартное правило выбора подцелей.

```
\mathcal{P}: R(Y) \leftarrow P(Y), Q(Y);
P(a) \leftarrow ;
P(b) \leftarrow ;
Q(a) \leftarrow ;
Q(f(X)) \leftarrow Q(X);
```

Предположим, что в теле первого программного утверждения $R(Y) \leftarrow P(Y)$, Q(Y); программист поменял местами атомы P(Y) и Q(Y). Как изменится в этом случае дерево SLD-резолютивных вычислений запроса G?

Упражнение 1.122. Имеет ли запрос G= ? P(a,c), обращенный к программе \mathcal{P} , хотя бы одно успешное SLD-резолютивное вычисление?

```
\mathcal{P}: P(a,b) \leftarrow ;
P(c,b) \leftarrow ;
P(X,Z) \leftarrow P(X,Y), P(Y,Z);
P(X,Y) \leftarrow P(Y,X);
```

Покажите, что в том случае, если из указанной программы удалить хотя бы одно программное утверждение, то запрос G не будет иметь ни одного правильного ответа. Покажите, что руководствуясь стандартной стратегией вычислений нельзя вычислить ни один ответ на запрос G, обращенный к программе \mathcal{P} . Какой должна быть стратегия вычислений, позволяющая вычислить хотя бы один ответ на запрос G к программе \mathcal{P} .

Упражнение 1.123. Приведите пример такой хорновской логической программы \mathcal{P} и такого запроса G, для которых существуют два успешных вычисления, но при этом никакое правило выбора подцелей не позволяет построить, руководствуясь процедурой поиска в глубину с возвратом, *оба* успешных вычисления.

Упражнение 1.124. Создайте хорновские логические программы, которые решают следующие задачи.

- 1. Программа порождает всевозможные перестановки элементов заданного списка L. Обращение к программе должно имет вид ? permut(L,X).
- 2. Программа порождает всевозможные префиксы заданного слова L, представленного списком букв. Обращение к программе должно имет вид ? all_prefixes(L,X).

- 3. Программа порождает всевозможные суффиксы заданного слова L, представленного списком букв. Обращение к программе должно имет вид ? all_suffixes(L,X).
- 4. Программа порождает список всех букв заданного конечного алфавита $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$, содержащихся в списке L однократно. Обращение к программе должно имет вид ? single(L,X).
- 5. Программа порождает список всех букв заданного конечного алфавита $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$, содержащихся в списке L многократно. Обращение к программе должно имет вид ? multiple(L,X).
- 6. Программа порождает список всех букв заданного конечного алфавита $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$, содержащихся в списке L_1 и не содержащихся в списке L_2 . Обращение к программе должно имет вид ? filter(L1,L2,X).
- 7. Программа порождает всевозможные сочетания элементов заданного бесповторного списка L_1 . Обращение к программе должно имет вид ? combination(L1, X).
- 8. Программа порождает всевозможные сочетания элементов заданного бесповторного списка L_1 , длина которых равна длине заданного списка L_2 . Обращение к программе должно имет вид ? combination2(L1,L2,X).
- 9. Программа порождает всевозможные сочетания с повторением элементов заданного бесповторного списка L_1 , длина которых равна длине заданного списка L_2 . Обращение к программе должно имет вид? combination_repit(L1,L2,X).

1.13 Алгоритмическая полнота и алгоритмическая неразрешимость.

Упражнение 1.125. Возьмите ленточную конфигурацию α_0 , представленную на рис. ??, и постройте дерево SLD-резолютивных вычислений для запроса ? $P(left(\alpha_0), right(\alpha_0), X, Y)$, обращенного к логической программе \mathcal{P}_{π} , представленной на рис. ??.

Упражнение 1.126. Какое устройство имеют деревья SLD-резолютивных вычислений запросов ? $P(left(\alpha), right(\alpha), X, Y)$, обращенных к логическим программам \mathcal{P}_{π} , соответствующим детерминированным программам машин Тьюринга.

Упражнение 1.127. Пусть π — произвольная программа машины Тьюринга, α — ленточная конфигурация, являющаяся заключительной для программы π . Каково множество вычисленных ответов на запрос ? $P(X,Y,left(\alpha),right(\alpha))$ к логической программе \mathcal{P}_{π} ?

Упражнение 1.128. *Частично-рекурсивной функцией* называется всякая частично определенная функция натурального аргумента $f^{(n)}:\mathbb{N}_0^n\to\mathbb{N}_0$, которая может быт построена из базовых функций

- константы 0,
- функции следования $s^{(1)}(x) = x + 1$,

- ullet селекторных функций $I^{(n)}(x_1,x_2,\ldots,x_n)=x_m,\ n\geq 1,\ 1\leq m\leq n,$ при помощи следующих операций:
 - 1. суперпозиция **S**: для любой функции $f^{(n)}$ и набора из n функций $g_1^{(m)}, \ldots, g_n^{(m)}$, в результате применения операции суперпозиции $\mathbf{S}[f, g_1, \ldots, g_n]$ образуется функция

$$h^{(m)}(x_1,\ldots,x_m) = f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m));$$

2. примитивная рекурсия Π : для любой пары функций $f^{(n)}$ и $g^{(n+2)}$ в результате применения операции примитивной рекурсии $\Pi[f,g]$ образуется функция $h^{(n+1)}(x_1,\ldots,x_n,x_{n+1})$, удовлетворяющая для любого набора значений переменных x_1,\ldots,x_n и любого натурального числа k следующим двум равенствам:

$$h(x_1, ..., x_n, 0) = f(x_1, ..., x_n),$$

 $h(x_1, ..., x_n, k + 1) = g(x_1, ..., x_n, k, h(x_1, ..., x_n, k));$

3. неограниченная минимизации μ : для любой функции $f^{(n)}$, $n \ge 1$ в результате применения операции неограниченной минимизации $\mu[f]$ образуется функция $h^{(n)}(x_1,\ldots,x_n)$, значение которой для любого набора значений переменнных x_1,\ldots,x_{n-1},x_n удовлетворяет следующему соотношению:

$$h(x_1,\dots,x_{n-1},x_n) = \left\{ \begin{array}{ll} k, & \text{если существует такое натуральное число } k, \text{ что} \\ & \text{i) выполняется равенство } f(x_1,\dots,x_{n-1},k) = x_n, \\ & \text{ii) для любого } m, \ 0 \leq m \leq k-1, \\ & \text{значение функции } f(x_1,\dots,x_{n-1},m) \\ & \text{определено и отлично от } x_n, \end{array} \right.$$

Из тезиса Черча следует, что класс эффективно вычислимых арифметических функций совпадает с классом частично-рекурсивных функций. Поэтому для доказательства алгоритмической полноты хорновских логических программ достаточно показать, что все частично-рекрсивные функции могут быть вычислены логическими программами.

Условимся представлять натуральные числа в виде списков: пустой список **nil** будет обозначать число 0, одноэлементный список **nil • nil** — число 1, список **nil • nil** — число 2 и т. д. Список, соответствующий натуральному числу k, будем обозначать \mathbf{k} .

Покажите, что для каждой частично-рекурсивной функции $f(x_1,\ldots,x_n)$ можно ввести предикатный символ $P_f^{(n+1)}$ и построить такую хорновскую логическую программу \mathcal{P}_f , которая на любой запрос $G: ? P_f(\mathbf{k_1},\ldots,\mathbf{k_n},Y)$

- вычисляет единственный ответ $\{Y/\mathbf{m}\}$ тогда и только тогда, когда $f(k_1, \dots, k_n) = m$,
- ullet не имеет успешных вычислений тогда и только тогда, когда значение $f(k_1,\dots,k_n)$ не определено.

Упражнение 1.129. Выясните, можно ли построить алгоритмы, способные для любой хорновской логической программы \mathcal{P} , произвольного запроса G и произвольной подстановки θ выяснить,

- 1. является ли дерево SLD-резолютивных вычислений запроса G к логической программе $\mathcal P$ конечным?
- 2. является ли подстановка θ правильным ответом на запрос G к программе \mathcal{P} ?
- 3. является ли подстановка θ вычисленным ответом на запрос G к программе \mathcal{P} ?
- 4. существует ли хотя бы один запрос к программе \mathcal{P} , для которого существует успешное вычисление?
- 5. существует ли бесконечно много различных успешных вычислений запроса G к программе \mathcal{P} ?
- 6. верно ли, что нак запрос G программа \mathcal{P} вычисляет то же самое множество ответов, что и некоторая заданная хорновская логическая программа \mathcal{P}' ?

Упражнение 1.130. Докажите, что ни одна система автоматического доказательства теорем не может гарантировать решения следующих вопросов для произвольных формул логики предикатов:

- 1. является ли заданное предложение φ логическим следствием заданного множества предложений Γ ?
- 2. является ли заданная формула φ противоречивой?
- 3. является ли заданная формула φ выполнимой?
- 4. является ли выполнимой система дизъюнктов $\Gamma = \{D_1, \dots, D_N\}$, каждый дизъюнкт D_i которой содержит не более двух литер?
- 5. имеет ли заданное предложение φ конечную модель?
- 6. являются ли две формулы логики предикатов φ_1 и φ_2 равносильными?

Упражнение 1.131. Алгоритмическая неразрешимость проблемы общезначимости для логики предикатов первого порядка не отменяет возможности построения алгоритмов, проверяющих общезначимость формул специального вида.

Докажите, что существует алгоритм, проверяющий общезначимость т. н. ∀-формул, предваренная нормальная форма которых имеет вид

$$\forall x_1 \forall x_2 \dots \forall x_n \ \varphi(x_1, x_2, \dots, x_n).$$

Каков этот алгоритм?

Упражнение 1.132. Докажите, что не существует алгоритма, проверяющего общезначимость т. н. ∃-формул, предваренная нормальная форма которых имеет вид

$$\exists x_1 \exists x_2 \dots \exists x_n \ \varphi(x_1, x_2, \dots, x_n).$$

А существует ли алгоритм проверки общезначимости \exists -формул, в матрице $\varphi(x_1, x_2, \dots, x_n)$ которых не содержится функциональных символов?

Упражнение 1.133. Докажите, что не существует алгоритма, проверяющего общезначимость формул, предваренная нормальная форма которых имеет вид

$$\exists x_1 \exists x_2 \exists x_3 \forall y_1 \dots \forall y_n \ \varphi(x_1, x_2, x_3, y_1, \dots, y_n),$$

где $n \ge 1$.

Упражнение 1.134. Диадической логикой называется множество формул логики предикатов, содержащих только двухместные предикатные символы. Постройте алгоритм, который для произвольной формулы логики предикатов φ строит такую формулу диадической логики φ^* , для которой верно соотношение:

$$\models \varphi \iff \models \varphi^*$$
.

Докажите, что проблема общезначимости формул диадической логики алгоритмически неразрешима.

Упражнение 1.135. Докажите, что не существует алгоритма, проверяющего общезначимость формул диадической логики, построенных в сигнатуре $\sigma = \langle \emptyset, \emptyset, \{P^{(2)}\} \rangle$, т. е. формул не содержащих констант и функциональных символов и содержащих только один двухместный функциональный символ $P^{(2)}$.

Упражнение 1.136. Постройте алгоритм, проверяющий общезначимость формул монадической логики, т. е. формул, которые строятся в сигнатуре $\sigma = \langle \emptyset, \emptyset, \{P_1^{(1)}, P_2^{(1)}, \dots, P_N^{(1)}\} \rangle$, не содержащей констант и функциональных символов и содержащей только одноместные предикатные символы P_1, P_2, \dots, P_N .

Сохранится ли алгоритмическая разрешимость проблемы общезначимости для формул, построенных из одноместных предикатов, в том случае, если в этих формулах наряду с предикатами разрешить использовать многоместные функциональные символы?