Задачи

- I. Порождающие грамматики. Языки, порождаемые грамматиками. Классификация грамматик и языков по Хомскому
- 1. Дана грамматика. Построить вывод заданной цепочки.

а)
$$S \to T \mid T+S \mid T-S$$
 $T \to F \mid F*T$ $F \to a \mid b$ Цепочка $a-b*a+b$

b)
$$S \rightarrow aSBC \mid abC$$

 $CB \rightarrow BC$
 $bB \rightarrow bb$
 $bC \rightarrow bc$
 $cC \rightarrow cc$
Цепочка aaabbbccc

2. Построить все сентенциальные формы для грамматики с правилами:

$$S \rightarrow A+B \mid B+A$$

 $A \rightarrow a$
 $B \rightarrow b$

3. К какому типу по Хомскому относится данная грамматика? Какой язык она порождает? Каков тип языка? Указать ммаксимаьно возможный номер типа грамматки и языка.

a)
$$S \rightarrow APA$$

 $P \rightarrow + | -$
 $A \rightarrow a | b$

b)
$$S \rightarrow A \mid SA \mid SB$$

 $A \rightarrow a$
 $B \rightarrow b$

c)
$$S \rightarrow 1B$$

 $B \rightarrow B0 \mid 1$

d)
$$S \rightarrow aQb \mid \varepsilon$$

 $Q \rightarrow cSc$

e)
$$S \rightarrow a \mid Ba$$

 $B \rightarrow Bb \mid b$

f)
$$S \rightarrow Ab$$

 $A \rightarrow Aa \mid ba$

g)
$$S \rightarrow 0A1 \mid 01$$

 $0A \rightarrow 00A1$
 $A \rightarrow 01$

h)
$$S \rightarrow AB$$

 $AB \rightarrow BA$
 $A \rightarrow a$
 $B \rightarrow b$

i)
$$S \rightarrow A \mid B$$

 $A \rightarrow aAb \mid 0$
 $B \rightarrow aBbb \mid 1$

j)
$$S \rightarrow 0A \mid 1S$$

 $A \rightarrow 0A \mid 1B$
 $B \rightarrow 0B \mid 1B \mid \bot$

k)
$$S \rightarrow 0S \mid S0 \mid D$$

 $D \rightarrow DD \mid 1A \mid \epsilon$
 $A \rightarrow 0B \mid \epsilon$
 $B \rightarrow 0A \mid 0$

1)
$$S \rightarrow 0A \mid 1S \mid \epsilon$$

 $A \rightarrow 1A \mid 0B$
 $B \rightarrow 0S \mid 1B$

$$m) S \rightarrow SS \mid A$$

$$A \rightarrow a \mid bb$$

n)
$$S \rightarrow AB \perp$$

 $A \rightarrow a \mid cA$
 $B \rightarrow bA$

o)
$$S \rightarrow aBA \mid \varepsilon$$

 $B \rightarrow bSA$
 $AA \rightarrow c$

p)
$$S \rightarrow Ab \mid c$$

 $A \rightarrow Ba$
 $B \rightarrow cS$

r) 1. S
$$\rightarrow$$
 KF 7. Bb \rightarrow bB
2. K \rightarrow KB | CB 8. Ab \rightarrow bA
3. C \rightarrow CA | DA 9. DF \rightarrow E
4. DA \rightarrow aAD 10. BE \rightarrow Eb
5. Aa \rightarrow aA 11. AE \rightarrow Ea
6. DB \rightarrow bBD 12. bE \rightarrow b

s) 1.
$$S \rightarrow DC$$
 6. $Ba \rightarrow aB$
2. $D \rightarrow aDA \mid bDB \mid aA \mid bB$ 7. $Ab \rightarrow bA$
3. $AC \rightarrow aC$ 8. $Bb \rightarrow bB$
4. $BC \rightarrow bC$ 9. $C \rightarrow \varepsilon$
5. $Aa \rightarrow aA$

t)
$$S \rightarrow aAc$$

 $aA \rightarrow aaBbC \mid ab$
 $Bb \rightarrow bb \mid abbbc \mid aDbbbcc$
 $C \rightarrow c$
 $D \rightarrow ab$

u)
$$S \rightarrow 0A1$$

 $0A \rightarrow 0B1 \mid 0$
 $B1 \rightarrow 0C11 \mid 01$
 $C \rightarrow 0D \mid 00D1 \mid 0$
 $D \rightarrow 01$

4. Построить грамматику, порождающую язык:

a)
$$L = \{ a^n b^m | n, m \ge 1 \}$$

b) L = {
$$\alpha$$
с β с γ с | α , β , γ — любые цепочки из а и b}

c) L = {
$$a_1 a_2 ... a_n a_n ... a_2 a_1 | a_i = 0$$
 или 1, $n \ge 1$ }

d)
$$L = \{ 0^n 1^{[n/2]}, n \ge 1 \}$$

e)
$$L = \{ ca^n cb^m c^n, n \ge 0, m \ge 0 \}$$

f)
$$L = \{ a^n b^m | n \neq m ; n, m \geq 0 \}$$

g)
$$L = \{$$
 цепочки из 0 и 1 с неравным числом 0 и $1\}$

h)
$$L = \{ \alpha \alpha \mid \alpha \in \{a, b\}^+ \}$$

i) $L = \{ \omega \mid \omega \in \{0, 1\}^+ \text{ и содержит равное количество 0 и 1, причем любая подцепочка, взятая с левого конца, содержит единиц не меньше, чем нулей \}.$

j)
$$L = \{ (a^{2m} b^m)^n | m \ge 1, n \ge 0 \}$$

k) L = {
$$a^{3^{n}+1} \perp | n \ge 1$$
}

1)
$$L = \{ a^{n^2} \mid n \ge 1 \}$$

m) L = {
$$a^{n^3+1} | n \ge 1$$
}

Каков тип этой грамматики? Каков тип языка?

5. К какому типу по Хомскому относится данная грамматика (указать максимально возможный номер)? Какой язык она порождает? Каков тип языка? Выписать грамматику, в состав которой входит только один нетерминал – цель грамматики, подтверждающую ответ.

a)
$$S \rightarrow AB \mid ASB$$

 $A \rightarrow a$
 $aB \rightarrow b$
 $bB \rightarrow bb$

b)
$$S \rightarrow 1A0$$

 $1A \rightarrow 11A0 \mid 01$

6. Эквивалентны ли грамматики с правилами:

a)
$$S \rightarrow AB$$
 μ $S \rightarrow AS \mid SB \mid AB$ $A \rightarrow a \mid Aa$ $B \rightarrow b \mid Bb$ $B \rightarrow b$

b) $S \rightarrow aSL \mid aL$ μ $S \rightarrow aSBc \mid abc$ $CB \rightarrow Bc$ $CK \rightarrow KC$ $CB \rightarrow bb$

7. Построить КС-грамматику, эквивалентную грамматике с правилами:

a)
$$S \rightarrow aAb$$

 $aA \rightarrow aaAb$
 $A \rightarrow \epsilon$
b) $S \rightarrow AB \mid ABS$
 $AB \rightarrow BA$
 $BA \rightarrow AB$
 $A \rightarrow a$
 $B \rightarrow b$

8. Построить регулярную грамматику, эквивалентную грамматике с правилами:

a)
$$S \rightarrow A \mid AS$$

 $A \rightarrow a \mid bb$
b) $S \rightarrow A \cdot A$
 $A \rightarrow B \mid BA$
 $B \rightarrow 0 \mid 1$

9. Привести пример грамматики, все правила которой имеют вид $A \to Bt$, либо $A \to t B$, либо $A \to t$, для которой не существует эквивалентной регулярной грамматики.

10. Доказать, что грамматика с правилами:

$$S \rightarrow aSBC \mid abC$$

$$CB \rightarrow BC$$

$$bB \rightarrow bb$$

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

порождает язык $L = \{a^n b^n c^n | n \ge 1\}.$

Для этого показать, что в данной грамматике

- 1. выводится любая цепочка вида $a^n b^n c^n (n \ge 1)$ и
- 2. не выводятся никакие другие цепочки.
- 11. Дана грамматика с правилами:

a)
$$S \rightarrow S0 \mid S1 \mid D0 \mid D1$$

 $D \rightarrow H$.
 $H \rightarrow 0 \mid 1 \mid H0 \mid H1$

b)
$$S \rightarrow \text{if } B \text{ then } S \mid B = E$$

 $E \rightarrow B \mid B + E$
 $B \rightarrow a \mid b$

Построить восходящим и нисходящим методами дерево вывода для цепочки:

a) 10.1001

- b) if a then b = a+b+b
- 12. Определить тип грамматики. Описать язык, порождаемый этой грамматикой. Написать для этого языка КС-грамматику.

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{P} \bot \\ \mathbf{P} &\rightarrow \mathbf{1P1} \mid \mathbf{0P0} \mid \mathbf{T} \\ \mathbf{T} &\rightarrow \mathbf{021} \mid \mathbf{120R} \\ \mathbf{R1} &\rightarrow \mathbf{0R} \\ \mathbf{R0} &\rightarrow \mathbf{1} \\ \mathbf{R} \bot &\rightarrow \mathbf{1} \bot \end{split}$$

- 13. Построить регулярную грамматику, порождающую цепочки в алфавите {a, b}, в которых символ а не встречается два раза подряд.
- 14. Написать КС-грамматику для языка L, построить дерево вывода и левосторонний вывод для цепочки aabbbcccc.

$$L = \{a^{2n} b^m c^{2k} | m=n+k, m>1\}.$$

- 15. Построить грамматику, порождающую сбалансированные относительно круглых скобок цепочки в алфавите $\{a,(,),\bot\}$. Сбалансированную цепочку α определим рекуррентно: цепочка α сбалансирована, если
- а) а не содержит скобок,
- b) $\alpha = (\alpha_1)$ или $\alpha = \alpha_1 \alpha_2$, где α_1 и α_2 сбалансированы.
- 16. Написать КС-грамматику, порождающую язык L, и вывод для цепочки аасbbbcaa в этой грамматике.

$$L = \{a^n cb^m ca^n | n, m>0\}.$$

17. Написать КС-грамматику, порождающую язык L, и вывод для цепочки 110000111 в этой грамматике.

$$L = \{1^n \ 0^m \ 1^p \mid n+p>m; \ n, p, m>0\}.$$

- 18. Дан язык $L = \{1^{3n+2} \ 0^n \mid n \ge 0\}$. Определить его тип, написать грамматику, порождающую L. Построить левосторонний и правосторонний выводы, дерево разбора для цепочки 1111111100.
- 19. Написать общие алгоритмы построения по данным КС-грамматикам G1 и G2, порождающим языки L1 и L2, КС-грамматики для
- a) L1∪L2
- b) L1 * L2
- c) L1*

Замечание: L = L1 * L2 — это конкатенация языков L1 и L2, т.е.L = { $\alpha\beta$ | $\alpha \in L1$, $\beta \in L2$ }; L = L1* — это итерация языка L1, т.е. объединение { ϵ } \cup L1 \cup L1*L1 \cup L1*L1 \cup ...

- 20. Написать КС-грамматику для $L=\{\omega_i\ 2\ \omega_{i+1}{}^R\ |\ i\in N,\ \omega_i=(i)_2$ двоичное представление числа $i,\ \omega^R$ обращение цепочки $\omega\}$. Написать КС-грамматику для языка L^* (см. задачу 19 раздела I).
- 21. Показать, что грамматика

$$E \rightarrow E+E \mid E*E \mid (E) \mid i$$

неоднозначна. Как описать этот же язык с помощью однозначной грамматики?

- 22. Показать, что наличие в КС-грамматике правил вида
- a) $A \rightarrow AA \mid \alpha$
- b) $A \rightarrow A\alpha A \mid \beta$
- c) $A \rightarrow \alpha A \mid A\beta \mid \gamma$

где α , β , $\gamma \in (VT \cup VN)^*$, $A \in VN$, делает ее неоднозначной. Можно ли преобразовать эти правила таким образом, чтобы полученная эквивалентная грамматика была однозначной?

23. Показать, что грамматика G неоднозначна. Какой язык она порождает? Является ли этот язык однозначным?

G:
$$S \rightarrow aAc \mid aB$$

 $B \rightarrow bc$
 $A \rightarrow b$

- 24. Дана КС-грамматика $G=\{VT, VN, P, S\}$. Предложить алгоритм построения множества $X=\{A\in VN\mid A\Rightarrow \epsilon\}$.
- 25. Для произвольной КС-грамматики G предложить алгоритм, определяющий, пуст ли язык L(G).
- 26. Написать приведенную грамматику, эквивалентную данной.

a)
$$S \rightarrow aABS \mid bCACd$$

 $A \rightarrow bAB \mid cSA \mid cCC$
 $B \rightarrow bAB \mid cSB$
b) $S \rightarrow aAB \mid E$
 $A \rightarrow dDA \mid \epsilon$
 $B \rightarrow bE \mid f$

$$C \rightarrow cS \mid c$$

$$C \rightarrow cAB \mid dSD \mid a$$

$$D \rightarrow eA$$

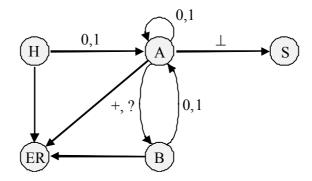
$$E \rightarrow fA \mid g$$

- 27. Язык называется распознаваемым, если существует алгоритм, который за конечное число шагов позволяет получить ответ о принадлежности любой цепочки языку. Если число шагов зависит от длины цепочки и может быть оценено до выполнения алгоритма, язык называется легко распознаваемым. Доказать, что язык, порождаемый неукорачивающей грамматикой, легко распознаваем.
- 28. Доказать, что любой конечный язык, в который не входит пустая цепочка, является регулярным языком.
- 29. Доказать, что нециклическая КС-грамматика порождает конечный язык.

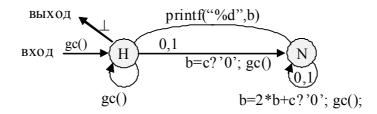
Замечание: Нетерминальный символ $A \in VN$ — циклический, если в грамматике существует вывод $A \Rightarrow \xi_1 A \xi_2$. КС-грамматика называется циклической, если в ней имеется хотя бы один циклический символ.

- 30. Показать, что условие цикличности грамматики (см. задачу 29) не является достаточным условием бесконечности порождаемого ею языка.
- 31. Доказать, что язык, порождаемый циклической приведенной КС-грамматикой, содержащей хотя бы один эффективный циклический символ, бесконечен.

Замечание: Циклический символ называется эффективным, если $A \Rightarrow \alpha A \beta$, где $|\alpha A \beta| > 1$; иначе циклический символ называется фиктивным.


II. Регулярные грамматики, ДС, анализаторы по ДС. Преобразование НКА к ДКА

1. Дана регулярная грамматика с правилами:


$$S \to S0 \mid S1 \mid P0 \mid P1$$

 $P \to N$.
 $N \to 0 \mid 1 \mid N0 \mid N1$.

Построить по ней диаграмму состояний и использовать ДС для разбора цепочек: 11.010, 0.1, 100. Какой язык порождает эта грамматика?

- 2. Дана ДС.
 - а) Осуществить разбор цепочек $1011 \pm 10+011 \pm 40-101+1 \pm 1$.
 - b) Восстановить регулярную грамматику, по которой была построена данная ДС.
 - с) Какой язык порождает полученная грамматика?

3. Пусть имеется переменная **c** и функция gc(), считывающая в **c** очередной символ анализируемой цепочки. Дана ДС с действиями:

- а) Определить, что будет выдано на печать при разборе цепочки $1+101//p11+++1000/5\bot$?
 - b) Написать на Си анализатор по этой ДС.
- 4. Написать регулярную леволинейную грамматику для заданного языка, по ней построить ДС, а по ДС программу анализатора.

a) L =
$$\{x \alpha y \perp | \alpha \in \{x, y\}^*\}$$

b) L =
$$\{(x y^3)^n \perp | n \ge 1\}$$

c) L =
$$\{(abb)^k \perp | k \ge 1\}$$

- d) L = $\{\omega \perp \mid \omega \in \{0,1\}^*$, где за каждой 1 непосредственно следует 0 $\}$
- е) $L = \{1\omega 1 \perp | \omega \in \{0,1\}^+,$ где все подряд идущие 0 подцепочки нечетной длины $\}$
- 5. Дана регулярная грамматика:

$$S \rightarrow A \perp$$

$$A \rightarrow Ab \mid Bb \mid b$$

$$B \rightarrow Aa$$

Определить язык, который она порождает; построить ДС; написать на Си анализатор.

- 6. Построить ДС, по которой в заданном тексте, оканчивающемся на \bot , выявляются все парные комбинации <>, <= и >= и подсчитывается их общее количество.
- 7. Написать на Си анализатор, выделяющий из текста вещественные числа без знака (они определены как в Паскале) и преобразующий их из символьного представления в числовое.
- 8. Написать на Си анализатор, выделяющий из текста вещественные числа без знака (они определены как в Паскале) и преобразующий их из символьного представления в числовое.

9. Даны две грамматики G1 и G2.

G1:
$$S \to 0C \mid 1B$$

 $B \to 0B \mid 1C \mid \epsilon$
 $C \to 0C \mid 1C$
 $C \to 0D \mid 1D \mid \epsilon$
 $D \to 0D \mid 1D$
 $L1 = L(G1); L2 = L(G2).$

Построить регулярную грамматику для:

- a) L1∪L2
- b) L1∩L2
- c) $L1^* \setminus \{\epsilon\}$
- d) $L2^* \setminus \{\epsilon\}$
- e) L1*L2

Если разбор по ней оказался недетерминированным, построить эквивалентную ей грамматику, допускающую детерминированный разбор.

10. Написать леволинейную регулярную грамматику, эквивалентную данной праволинейной, допускающую детерминированный разбор.

a)
$$S \rightarrow 0S \mid 0B$$

 $B \rightarrow 1B \mid 1C$
 $C \rightarrow 1C \mid \bot$

b)
$$S \rightarrow 0B$$

 $B \rightarrow 1C \mid 1S$
 $C \rightarrow \bot$

c)
$$S \rightarrow aB$$

 $B \rightarrow aC \mid aD \mid dB$
 $C \rightarrow aB$
 $D \rightarrow \bot$

- 11. Для данной грамматики
 - а) определить ее тип;
 - b) какой язык она порождает;
 - с) написать Р-грамматику, почти эквивалентную данной;
 - d) построить ДС и анализатор на Си.

$$S \rightarrow 0S \mid S0 \mid D$$

$$D \rightarrow DD \mid 1A \mid \varepsilon$$

$$A \rightarrow 0B \mid \varepsilon$$

$$B \rightarrow 0A \mid 0$$

12. Построить ДС, соответствующую заданной леволинейной регулярной грамматике. Если ДС задает НКА, то преобразовать НКА к ДКА, используя алгоритм преобразования. По получившемуся ДКА написать анализатор. Выписать соотвествующую ДКА грамматику.

a)
$$S \rightarrow Sa \mid Ab \mid b$$

 $A \rightarrow Ab \mid Sa \mid a$

b)
$$S \rightarrow Sb \mid Aa \mid a$$

 $A \rightarrow Sb \mid a \mid b$

c)
$$S \rightarrow C \perp$$

d)
$$S \rightarrow A \perp$$

$$C \rightarrow A1 \mid B1 \mid 1$$

$$A \rightarrow Bb \mid a$$

$$A \rightarrow A1 \mid C0 \mid 0$$

$$B \rightarrow C0 \mid 0$$

$$A \rightarrow Bb \mid b$$

e)
$$S \rightarrow B0 \mid C0$$

 $B \rightarrow B0 \mid 0$
 $C \rightarrow C1 \mid A1$
 $A \rightarrow 0$

f)
$$S \rightarrow Bb \mid Cc$$

 $B \rightarrow Bb \mid Ab$
 $C \rightarrow Cc \mid Ab$
 $A \rightarrow a$

g)
$$S \rightarrow S1 \mid A0$$

 $A \rightarrow B1 \mid C1$
 $B \rightarrow A0$
 $C \rightarrow C0 \mid 0$

h)
$$S \rightarrow Sa \mid Cc \mid a$$

 $C \rightarrow Bb$
 $B \rightarrow Sa \mid a$

i)
$$S \rightarrow C \perp$$

 $C \rightarrow A1 \mid B1 \mid 1$
 $A \rightarrow A1 \mid C0 \mid 0$
 $B \rightarrow C0 \mid 0$

$$\begin{array}{ccc} j) & & S \rightarrow A \bot \\ & A \rightarrow Bb \mid a \\ & B \rightarrow Bb \mid b \end{array}$$

$$\begin{array}{ccc} \text{k)} & & \text{S} \rightarrow \text{C}\bot \\ & \text{B} \rightarrow \text{B1} \mid 0 \mid \text{D0} \\ & \text{C} \rightarrow \text{B1} \mid \text{C1} \\ & \text{D} \rightarrow \text{D0} \mid 0 \end{array}$$

1)
$$S \rightarrow C \perp$$

 $C \rightarrow B1$
 $B \rightarrow 0 \mid D0$
 $D \rightarrow B1$

$$\begin{array}{cc} \text{m)} & \text{S} \rightarrow \text{A0} \\ & \text{A} \rightarrow \text{A0} \mid \text{S1} \mid 0 \end{array}$$

n)
$$S \rightarrow B0 \mid 0$$

 $B \rightarrow B0 \mid C1 \mid 0 \mid 1$
 $C \rightarrow B0$

o)
$$S \rightarrow A0 \mid A1 \mid B1 \mid 0 \mid 1$$

 $A \rightarrow A1 \mid B1 \mid 1$
 $B \rightarrow A0$

p)
$$S \rightarrow S0 \mid A1 \mid 0 \mid 1$$

 $A \rightarrow A1 \mid B0 \mid 0 \mid 1$
 $B \rightarrow A0$

r)
$$S \rightarrow Sb \mid Aa \mid a \mid b$$

 $A \rightarrow Aa \mid Sb \mid a$

13. Грамматика G определяет язык L=L1 \cup L2, причем L1 \cap L2 = \varnothing . Написать регулярную грамматику G1, которая порождает язык L1*L2 (см. задачу 19 раздела І.). Для нее построить ДС и анализатор.

$$S \rightarrow A \perp$$

$$A \rightarrow A0 \mid A1 \mid B1$$

$$B \rightarrow B0 \mid C0 \mid 0$$

$$C \rightarrow C1 \mid 1$$

- 14. Даны две грамматики G1 и G2, порождающие языки L1 и L2. Построить регулярные грамматики для
 - a) $L1 \cup L2$
 - b) $L1 \cap L2$
 - c) L1 * L2 (см. задачу 19 раздела I.)

G1:
$$S \rightarrow S1 \mid A0$$

 $A \rightarrow A1 \mid 0$
G2: $S \rightarrow A1 \mid B0 \mid E1$
 $A \rightarrow S1$
 $B \rightarrow C1 \mid D1$
 $C \rightarrow 0$
 $D \rightarrow B1$
 $E \rightarrow E0 \mid 1$

Для полученной грамматики построить ДС и анализатор.

15. По данной грамматике G1 построить регулярную грамматику G2 для языка L1*L1 (см. задачу 19 раздела I.), где L1 = L(G1); по грамматике G2 — ДС и анализатор.

G1:
$$S \rightarrow S1 \mid A1$$

 $A \rightarrow A0 \mid 0$

III. Метод рекурсивного спуска (РС-метод). Применимость РС-метода. КС-грамматики с действиями

1. Определить, применим ли РС-метод грамматике. Ответ обосновать.

a)
$$S \rightarrow cA \mid B \mid d$$

 $A \rightarrow abA \mid c \mid \epsilon$
 $B \rightarrow bSc \mid aAb$

b)
$$S \rightarrow aAbc \mid A$$

 $A \rightarrow bB \mid cBc$
 $B \rightarrow bcB \mid a \mid \epsilon$

c)
$$S \rightarrow aSB \mid bAf \mid \epsilon$$

 $A \rightarrow bAc \mid cS$
 $B \rightarrow cB \mid d$

d)
$$S \rightarrow aSB \mid bA$$

 $A \rightarrow aS \mid cA \mid \epsilon$
 $B \rightarrow bB \mid d$

e)
$$S \rightarrow bABCb \mid d$$

 $A \rightarrow aA \mid cB \mid \epsilon$
 $B \rightarrow Sc$
 $C \rightarrow a \{bb\}$

f)
$$S \rightarrow aAb \mid cC$$

 $A \rightarrow a \mid bab \mid B$
 $B \rightarrow cAc \mid aB \mid \epsilon$
 $C \rightarrow Bb$

g)
$$S \rightarrow aA\{xx\}$$

 $A \rightarrow bA \mid cBx \mid \epsilon$
 $B \rightarrow bSc$

h)
$$S \rightarrow aSc \mid bA \mid \epsilon$$

 $A \rightarrow cS\{da\}bA \mid d$

i)
$$S \rightarrow bS \mid aAB$$

 $A \rightarrow bcA \mid ccA \mid \epsilon$
 $B \rightarrow cbB \mid \epsilon$

j)
$$S \rightarrow aASb \mid cfAd$$

 $A \rightarrow bA \mid c \mid \epsilon$

2. Восстановить грамматику по функциям, реализующим синтаксический анализ методом рекурсивного спуска. Можно ли было по этой грамматике вести анализ методом рекурсивного спуска?

```
a).
         #include <iostream.h>
        int c;
void A();
void B();
         void gc() \{cin >> c; \}
         if ( c != '⊥')
                          throw c;
         }
       void A() {
    B();
    while ( c == 'a') {
        gc();
        B();
}
        void B() {
   if ( c == 'b' )
                          gc();
        }
                          cout << "SUCCESS !!!" << endl;
return 0;
                 catch (int c) {
    cout << "ERROR on Lexeme" << c << endl;</pre>
                          return 1;
                 }
         }
b).
         #include <i ostream. h>
        int c;
void A();
void B();
         void gc() \{cin >> c; \}
        void S() {
    if (c == 'a') {
        gc();
        A();
                 el se
                          if (c == 'b' ) {
    gc();
    B();
                          el se
                                   throw c;
         }
         void A() {
                 if ( c == 'c') {
                          gc();
S();
                 }
         }
        void B() {
    while ( c == ',' ) {
        gc();
```

```
if (c != 'b')
                                     throw c;
                           gc();
                  }
         }
        int main() {
    try { gc();
        S();
        cout << "SUCCESS !!!" << endl;
        return 0;</pre>
                  catch (int c) {
    cout << "ERROR on Lexeme" << c << endl;</pre>
                            return 1;
                  }
         }
c)
         #include <iostream.h>
         int c;
         void A();
         void gc() \{cin >> c; \}
         void S (void) {
    if (c == 'a'){
                           == a
gc();
S();
if (c
                                (c == 'b')
                                     gc();
                           el se
                                     throw c;
                  else A();
         }
         void A (void) {
    if (c == 'b')
                           gc();
                  el se
                  throw c;
while (c == 'b')
        int main() {
    try { gc();
    S();
    cout
                           cout << "SUCCESS !!!" << endl;
return 0;</pre>
                  catch (int c) {
     cout << "ERROR on Lexeme" << c << endl;
     return 1;</pre>
                  }
         }
d)
         #include <iostream.h>
         int c;
         void A();
void B();
         void gc() {cin >> c; }
         void S (void) {
     A();
                  if ( c != '⊥')
                           throw c;
         }
```

```
void A (void) {
       B();
       while ( c == 'a' ) {
              gc();
B();
       }
B();
}
void B (void) {
    if ( c == 'b' )
              gc();
}
cout << "SUCCESS !!!" << endl;
              return 0;
       catch (int c) {
    cout << "ERROR on Lexeme" << c << endl;</pre>
              return 1;
       }
}
```

3. Задана КС-грамматика G=(VT, VN, P, S). По ней написать синтаксический анализатор, реализующий PC-метод, предварительно преобразовав заданную грамматику, если это требуется для применимости PC-метода и если это возможно.

a)
$$S \rightarrow bS \mid aAB$$

 $A \rightarrow bcA \mid ccA \mid \epsilon$
 $B \rightarrow cbB \mid \epsilon$

b)
$$S \rightarrow aASb \mid cfAd$$

 $A \rightarrow bA \mid c \mid \epsilon$

c)
$$S \rightarrow Sa \mid Sbb \mid fAc$$

 $A \rightarrow aB \mid d$
 $B \rightarrow abB \mid Sb$

d)
$$S \rightarrow cAd$$

 $A \rightarrow Aa \mid bB$
 $B \rightarrow abB \mid \epsilon$

e)
$$S \rightarrow E \perp$$

 $E \rightarrow () \mid (E \{, E\}) \mid A$
 $A \rightarrow a \mid b$

f)
$$S \rightarrow P := E \mid \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S$$

$$P \rightarrow I \mid I (E)$$

$$E \rightarrow T \{+T\}$$

$$T \rightarrow F \{*F\}$$

$$F \rightarrow P \mid (E)$$

$$I \rightarrow a \mid b$$

g)
$$F \rightarrow \text{function I(I) S; I:=E end} \\ S \rightarrow \text{; I:=E S} \mid \epsilon \\ E \rightarrow E*I \mid E+I \mid I$$

h)
$$S \rightarrow SaAb \mid Sb \mid bABa$$

$$A \rightarrow acAb \mid cA \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

i)
$$S \rightarrow Ac \mid dBea$$

 $A \rightarrow Aa \mid Ab \mid daBc$
 $B \rightarrow cB \mid \epsilon$

$$\begin{array}{cc} j) & S \rightarrow fASd \mid \epsilon \\ & A \rightarrow Aa \mid Ab \mid dB \mid f \\ & B \rightarrow bcB \mid \epsilon \end{array}$$

4. Какой язык порождает заданная грамматика? Провести анализ цепочки $(a,(b,a),(a,(b)),b)\bot$.

$$S \rightarrow \langle k = 0 \rangle E \perp$$

 $E \rightarrow A \mid (\langle k = k+1; if (k == 3) ERROR(); \geq E \{,E\}) \langle k = k-1 \rangle$

$$A \rightarrow a \mid b$$

5. Есть грамматика, описывающая цепочки в алфавите $\{0, 1, 2, \bot\}$:

$$S \rightarrow A \perp$$

 $A \rightarrow 0A \mid 1A \mid 2A \mid \epsilon$

Дополнить эту грамматику действиями, исключающими из языка все цепочки, содержащие подцепочки 002.

6. Дана грамматика, описывающая цепочки в алфавите $\{a, b, c, \bot\}$:

$$S \rightarrow A \perp$$

 $A \rightarrow aA \mid bA \mid cA \mid \epsilon$

Дополнить эту грамматику действиями, исключающими из языка все цепочки, в которых не выполняется хотя бы одно из условий:

- в цепочку должно входить не менее трех букв с;
- если встречаются подряд две буквы а, то за ними обязательно должна идти буква b.
- 7. Есть грамматика, описывающая цепочки в алфавите {0, 1}:

$$S \rightarrow 0S \mid 1S \mid \varepsilon$$

Дополнить эту грамматику действиями, исключающими из языка любые цепочки, содержащие подцепочку 101.

8. Написать КС-грамматику с действиями для порождения

$$L = \{a^m b^n c^k \mid m+k = n \text{ либо } m-k = n\}.$$

9. Написать КС-грамматику с действиями для порождения

$$L = \{1^n \ 0^m \ 1^p \ | \ n+p > m, \quad m \ge 0\}.$$

10. Дана грамматика с семантическими действиями:

Какой язык описывает эта грамматика?

11. Дана грамматика:

$$S \rightarrow E \perp$$

 $E \rightarrow () \mid (E \{, E\}) \mid A$
 $A \rightarrow a \mid b$

Вставить в заданную грамматику действия, контролирующие соблюдение следующих условий:

- уровень вложенности скобок не больше четырех;
- на каждом уровне вложенности происходит чередование скобочных и бесскобочных элементов.
- 12. Включить в правила вывода действия, проверяющие выполнение следующих контекстных условий:
- а) Пусть в языке L есть переменные и константы целого, вещественного и логического типов, а также есть оператор цикла

$$S \rightarrow for I = E step E to E do S$$

Включить в это правило вывода действия, проверяющие выполнение следующих ограничений:

- тип I и всех вхождений Е должен быть одинаковым;
- переменная логического типа недопустима в качестве параметра цикла. Для каждой используемой процедуры привести ее текст на Си.
- b) Дан фрагмент грамматики $P \rightarrow \text{program D}$; begin $S \{; S \}$ end $D \rightarrow ... \mid \text{label L}\{,L\} \mid ...$ $S \rightarrow L \{ , L \} : S \mid S$ $S \rightarrow ... \mid \text{goto L} \mid ...$ $L \rightarrow I$

где I — идентификатор.

Вставить в грамматику действия, контролирующие выполнение следующих условий:

- каждая метка, используемая в программе, должна быть описана и только один раз;
- не должно быть одинаковых меток у различных операторов;
- если метка используется в операторе goto, то обязательно должен быть оператор, помеченный такой меткой.

Для каждой используемой процедуры привести ее текст на Си.

IV. Синтаксически управляемый перевод

- 1. Написать грамматику арифметического выражения, использующего операции +, -, *, / и круглые скобки (приоритет стандартный), аргументы операций переменные \mathbf{a} и \mathbf{b} , например: $\mathbf{a}+(\mathbf{b}-\mathbf{a})*\mathbf{b}/\mathbf{a}+\mathbf{b}$. Предполагая, что анализ грамматики будет производиться РСметодом, вставить в нее действия (в виде cout << ...) по переводу таких выражений в ПОЛИЗ.
- 2. Дана грамматика языка L1, в которую вставлены действия по переводу цепочек языка L1 в цепочки языка L2. Определить языки L1 и L2.

a)
$$S \rightarrow a < a = 1; b = 0; > A \perp$$

 $A \rightarrow a < if (a) \{ cout << 'a'; a = 0; \} else a++; > A |$
 $bA < if (b) \{ cout << 'b'; b = 0; \} else b++; > | \epsilon$

b)
$$S \rightarrow < a = 0; > E \perp < cout << `\percursis*(\percursis*) > $E \rightarrow a < a = 1; > E < cout << `a'; > |$
 $b < if (a == 0) cout << `b'; > E < cout << `b'; > | \epsilon$$$

3. Написать грамматику для языка L1. Вставить в нее действия по переводу цепочек языка L1 в соответствующие цепочки языка L2.

В качестве действий можно использовать только оператор cout << СУ-перевод происходит во время анализа **методом рекурсивного спуска**.

a) L1={
$$a^n c^m b^n$$
, $n \ge 0$, $m \ge 1$ }
L2={ $0^n 1^{n+m}$, $n \ge 0$, $m \ge 1$ }

- b) L1={ αe^n , $\alpha \in (a,b)^*$, $n \ge 1$ } L2={ $a^n e^m$, где m – количество символов а в цепочке α }
- с) L1 = { $\omega \in \{a,b\}^+$, где содержится n символов a и m символов b, расположенных в произвольном порядке; n, m \geq 0; n+m \geq 0 } L2 = { $1^{n+m}0^n \mid n, m \geq 0; n+m \geq 0 }$
- d) $L1 = \{ \ \omega \in \{a,b\}^+ \ , \ \text{где содержится } n \ \text{символов } a, \\ \text{расположенных } в \ \text{произвольном порядке}; \ n \geq 0 \} \\ L2 = \{ \ 2^n \omega^R \ | \ n \geq 0, \ \omega^R \ \text{— } peверс \ \text{цепочки } \omega \ \}$
- e) $L1 = \{1^n 0^m 1^m 0^n | m, n > 0\}$ $L2 = \{1^m 0^{n+m} | m, n > 0\}$
- f) L1={ $\omega \perp \mid \omega \in \{a, b\}^+$, $\omega = \alpha^n$, где $\alpha = ab \mid ba$, $n \ge 1$ } L2={ $\omega \perp \mid \omega = \beta^n$, где $\beta = \{b, ecnu \alpha = ab; либо a, ecnu \alpha = ba\}}$
- 4. Написать грамматику для языка L1. Вставить в нее действия по переводу цепочек языка L1 в соответствующие цепочки языка L2.

В качестве действий можно использовать любые операторы.

СУ-перевод происходит во время анализа методом рекурсивного спуска.

a)
$$L1 = \{ 1^{m} 0^{n} \mid n,m>0 \}$$

$$L2 = \{ 1^{m-n} \mid если m>n;$$

$$0^{n-m} \mid если m

$$\varepsilon \mid если m=n \}$$$$

- b) $L1 = \{b_i \mid b_i = (i)_2, \text{ т.е. } b_i \text{-это двоичное представление числа } i \in N\}$ $L2 = \{(b_{i+1})^R \mid b_{i+1} = (i+1)_2, \, \omega^R \text{ перевернутая цепочка } \omega\}$
- d) $L1=\{\ \omega\bot\ |\ \omega\in\{a,b\}^+\ ,\$ где содержится n символов a и m символов b, расположенных b произвольном порядкеb $L2=\{\ \omega\in\{a,b\}^*\ |\ \omega=a^{[n/2]}\ b^{[m/2]}\ \}$
- e) $L1=\{\omega\perp\mid\omega\in\{0,1\}^+$ и представляет $(b_i)^R$, т.е. реверс двоичного числа i } $L2=\{\omega\in\{/\}^*$, $\omega=/^i$, т.е. количество /, равное значению i }

- 5. Построить грамматику, описывающую целые двоичные числа (количество 0 и 1 четно, допускаются незначащие нули). Вставить в нее действия по переводу этих целых чисел в четверичную систему счисления.
- 6. Написать грамматику для выражений, содержащих переменные, знаки операций +, -, *, /, ** и скобки () с обычным приоритетом операций и скобок. Включить в эту грамматику действия по переводу этих выражений в префиксную запись (операции предшествуют операндам). Предложить интерпретатор префиксной записи выражений.
- 7. В грамматику, описывающую выражения, включить действия по переводу выражений из инфиксной формы (операция между операндами) в функциональную запись. Например,

$$a+b$$
 ==> + (a, b)
 $a+b*c$ ==> + (a, * (b, c))

V. ПОЛИЗ, перевод в ПОЛИЗ

- 1. Представить в ПОЛИЗе следующие выражения:
 - a) a+b-c
 - c) a/(b+c)*a
 - e) a and b or c
 - g) x+y=x/y

- b) a*b+c/a
- d) (a+b)/(c+a*b)
- f) not a or b and a
- h) (x*x+y*y<1) and (x>0)
- 2. Для следующих выражений в ПОЛИЗе дать обычную инфиксную запись:
 - a) ab*c+
- b) abc*/
- c) ab+c*

- d) ab+bc-/a+
- e) a not b and not
- f) abca and or and

- g) 2x+2x*<
- 3. Используя стек, вычислить следующие выражения в ПОЛИЗе:
 - x y*x y /+

- при x = 8, y = 2;
- a 2+b / b 4*+ b)
- при a = 4, b = 3;
- a b not and a or not c)
- при a = b = true;
- d) x y*0 > y 2 x - < and
- при x = y = 1.
- 4. Записать на ПОЛИЗе фрагмент программы на С:
 - S=0; i=1; while (i<10) { S=S*(i+i); i++; } a)
 - if (x+1) > (2*y)) x = y; else y = (x+y)*2; b)
 - i = 1; S = 0; while (i < 10 && S < 40) { S = S + f(i); ++i; }; c)
 - if (z < x * y + 5) a = x < y, z = (x + 6)/(a y); else z = y < < 2; d)
 - e) a = x + y < z*(t + x) ? - (a + b)/(c-d)*2 : ++x+5;
 - S = x+y; i = 1; for (i = 0; i < n; i++) { S = S + i*i*S; i = i*x; } f)
 - i = 1; S = 0; while (i < 10 && S < 40) { S = S + f(i); ++i; } g)
 - if (z < x * y + 5) a = x < y, z = (x + 6)/(a y); else z = y < < 2; h)
 - i) do $\{x = y; y = 2*y;\}$ while (x < k);
 - S = 0; for $(i = 1; i \le k; i = i + 1) S + = i*i;$ j)
 - k) switch (k) { case 1: a = not a; break; b = a or not b; case 2: case 3: a = b; }
- 5. Выражение на ПОЛИЗе записать в инфиксной форме (на С)

- a) $\underline{x} \underline{y} \underline{z} a x 5 y / + *z 6 + 8 * = ==$
- b) x a x z y / + * z 6 a * + =
- 6. Является ли запись

 \underline{y} , 15, =, \underline{x} , x, a, b, c, 2, /, 1, +, *, -, *, a, -, =, \underline{y} , y, 2, -, =, y, 10, <=, 4, !F правильной записью в ПОЛИЗе следующего фрагмента программы на С (считаем, что элементы ПОЛИЗа нумеруются с 1):

$$y = 15$$
; do $\{x = x*(a-b*(c/2+1)) - a; y = y-2;\}$ while y>10;

Если не является, то объясните почему и предложите свой вариант ПОЛИЗа для этого фрагмента программы.

7. Является ли запись

$$\underline{i}$$
, 1, =, i, n, <, 33 ,!F, \underline{a} , a, b,+,1, -, x, y, y, 2, +, /, -, *, 5 ,+ ,=, \underline{i} , i, 2, + ,=, 4, ! правильной записью в ПОЛИЗе следующего фрагмента программы на С (считаем, что элементы ПОЛИЗа нумеруются с 1):

for
$$(i = 1; i < n; i = i+2)$$
 $a = (a+b-1)*(x-y/(y+2))+5;$

Если не является, то объясните почему и предложите свой вариант ПОЛИЗа для этого фрагмента программы.

8. а) записать на ПОЛИЗе фрагмент программы на С:

$$i = 1$$
; $S = 0$; while ($i < 10 && S < 40$) { $S = S + f(i)$; ++ i ; };

b) выражение на ПОЛИЗе

$$\underline{x} \underline{y} \underline{z} a x 5 y / + * z 6 + 8 * - = = =$$
 записать в инфиксной форме (на C).

9. а) записать на ПОЛИЗе фрагмент программы на С:

if
$$(z < x * y + 5)$$
 $a = x < y$, $z = (x + 6)/(a - y)$; else $z = y < < 2$;

b) выражение на ПОЛИЗе

$$\underline{x}$$
 а x z y / + * z 6 а - * + = записать в инфиксной форме (на C).

10. Предложить ПОЛИЗ для следующих операторов:

a) if
$$(E) S_1; S_2; S_3$$

семантика этого оператора такова: вычисляется значение выражения E; если его значение меньше 0, то выполняется оператор S_1 ; если равно 0 — оператор S_2 , иначе — оператор S_3

f) choice (S₁; S₂; S₃), E

семантика этого оператора такова: вычисляется значение выражения E; если его значение равно i, то выполняется оператор S_i для $i=1,\,2,\,3$; иначе оператор choice эквивалентен пустому оператору.

семантика этого оператора отличается от семантики оператора for в языке Си только тем, что оператор S выполняется, по крайней мере, один раз (т.е. после вычисления выражения E_1 сразу выполняется оператор S, затем вычисляется значение E_3 , потом — значение E_2 , которое используется для контроля за количеством повторений цикла также, как и в цикле for).

- 11. Написать грамматику для выражений, содержащих переменные, знаки операций +, -, *, / и скобки (), где операции должны выполняться строго слева направо, но приоритет скобок сохраняется. Определить действия по переводу таких выражений в ПОЛИЗ.
- 12. Изменить приоритет операций отношения в М-языке (сделать его наивысшим). Построить соответствующую грамматику, отражающую этот приоритет. Написать синтаксический анализатор, обеспечить контроль типов, задать перевод в ПОЛИЗ.
- 13. Написать КС-грамматику, аналогичную данной,

$$E \rightarrow T \{+T\}$$

 $T \rightarrow F \{*F\}$
 $F \rightarrow (E) \mid i$

с той лишь разницей, что в новом языке будет допускаться унарный минус перед идентификатором, имеющий наивысший приоритет (например, a*-b+-c допускается и означает a*(-b)+(-c).

В созданную грамматику вставить действия по переводу такого выражения в ПОЛИЗ. Для каждой используемой процедуры привести ее текст на Си.

14. Дана грамматика, описывающая выражения:

$$E \rightarrow TE'$$

$$T \rightarrow FT'$$

$$F \rightarrow PF'$$

$$P \rightarrow (E) \mid i$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F' \rightarrow ^PF' \mid \epsilon$$

Включить в эту грамматику действия по переводу этих выражений в ПОЛИЗ. Для каждой используемой процедуры привести ее текст на Си.

СОДЕРЖАНИЕ

Задачи (Приложение к учебному пособию "Формальные грамматики и языки. Элементы теории трансляции")	1
I. Порождающие грамматики. Языки, порождаемые грамматиками. Классификация грамматик и языков по Хомскому	
II. Регулярные грамматики, ДС, анализаторы по ДС. Преобразование НКА к ДКА	6
III. Метод рекурсивного спуска (РС-метод). Применимость РС-метода. КС-грамматики с действиями	
IV. Синтаксически управляемый перевод	.15
V. ПОЛИЗ, перевод в ПОЛИЗ	.18