PAGE
1

Moscow State University

The Faculty of Computational Mathematics and Cybernetics.

From Wikipedia, the free encyclopedia

(определение, основы, отличительные черты, аналоги, теория строительных блоков)

By Maxim Avdjunin

Moscow 2007
Bioinformatics and Computational biology are interdisciplinary fields of research, development and application of algorithms, computational and statistical methods for management and analysis of biological data, and for solving basic biological problems. This article will touch one particular branch of bioinformatics namely genetic algorithm theory.

A genetic algorithm (GA) is an algorithm used to find approximate solutions to difficult-to-solve problems through application of the principles of evolutionary biology to computer science. Genetic algorithms use biologically-derived techniques such as inheritance, mutation, natural selection, and recombination. Genetic algorithms are a particular class of evolutionary algorithms. GA is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are categorized as global search heuristics. Genetic algorithms are a particular class of evolutionary algorithms (also known as evolutionary computation) that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination).

Methodology

Genetic algorithms are implemented as a computer simulation in which a population of abstract representations (called chromosomes or the genotype or the genome) of candidate solutions (called individuals, creatures, or phenotypes) to an optimization problem evolves toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible. The evolution usually starts from a population of randomly generated individuals and happens in generations. In each generation, the fitness of every individual in the population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), and modified (recombined and possibly randomly mutated) to form a new population. The new population is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population. If the algorithm has terminated due to a maximum number of generations, a satisfactory solution may or may not have been reached.

The fitness function is defined over the genetic representation and measures the quality of the represented solution. The fitness function is always problem dependent. For instance, in the knapsack problem we want to maximize the total value of objects that we can put in a knapsack of some fixed capacity. A representation of a solution might be an array of bits, where each bit represents a different object, and the value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such representation is valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the solution is the sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise. In some problems, it is hard or even impossible to define the fitness expression; in these cases, interactive genetic algorithms are used.

Once we have the genetic representation and the fitness function defined, GA proceeds to initialize a population of solutions randomly, then improve it through repetitive application of mutation, crossover, inversion and selection operators.

Initialization, selection and reproduction.
Initially many individual solutions are randomly generated to form an initial population. The population size depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. During each successive generation, a proportion of the existing population is selected to breed a new generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fitness function) are typically more likely to be selected. Most functions are stochastic and designed so that a small proportion of less fit solutions are selected. The next step is to generate a second generation population of solutions from those selected through genetic operators: crossover (also called recombination), and/or mutation.

Termination

This generational process is repeated until a termination condition has been reached. Common terminating conditions are:
· A solution is found that satisfies minimum criteria

· Fixed number of generations reached

· Allocated budget (computation time/money) reached

· The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations no longer produce better results

· Manual inspection

· Combinations of the above.

Observations
There are several general observations about the generation of solutions via a genetic algorithm:

· In many problems, GAs may have a tendency to converge towards local optima or even arbitrary points rather than the global optimum of the problem. This means that it does not "know how" to sacrifice short-term fitness to gain longer-term fitness.
· Operating on dynamic data sets is difficult, as genomes begin to converge early on towards solutions which may no longer be valid for later data.

· GAs cannot effectively solve problems in which the only fitness measure is right/wrong, as there is no way to converge on the solution. (No hill to climb.) In these cases, a random search may find a solution as quickly as a GA.

· Selection is clearly an important genetic operator, but opinion is divided over the importance of crossover versus mutation.
· Often, GAs can rapidly locate good solutions, even for difficult search spaces. The same is of course also true for evolution strategies and evolutionary programming.

· For specific optimization problems and problem instantiations, simpler optimization algorithms may find better solutions than genetic algorithms.
· As with all current machine learning problems it is worth tuning the parameters such as mutation probability, recombination probability and population size to find reasonable settings for the problem class being worked on.
· The implementation and evaluation of the fitness function is an important factor in the speed and efficiency of the algorithm.

Variants

The simplest algorithm represents each chromosome as a bit string. Typically, numeric parameters can be represented by integers, though it is possible to use floating point representations. The floating point representation is natural to evolution strategies and evolutionary programming.
When bit strings representations of integers are used, Gray coding is often employed. In this way, small changes in the integer can be readily effected through mutations or crossovers
Other approaches involve using arrays of real-valued numbers instead of bit strings to represent chromosomes.
A very successful (slight) variant of the general process of constructing a new population is to allow some of the better organisms from the current generation to carry over to the next, unaltered. This strategy is known as elitist selection.

Parallel implementations of genetic algorithms come in two flavours. Coarse grained parallel genetic algorithms assume a population on each of the computer nodes and migration of individuals among the nodes. Fine grained parallel genetic algorithms assume an individual on each processor node which acts with neighboring individuals for selection and reproduction. Other variants, like genetic algorithms for online optimization problems, introduce time-dependence or noise in the fitness function.

Population-based incremental learning is a variation where the population as a whole is evolved rather than its individual members.

Related techniques

· Ant colony optimization (ACO) uses many ants (or agents) to traverse the solution space and find locally productive areas.
· Bacteriologic Algorithms (BA) inspired by evolutionary ecology and, more particularly, bacteriologic adaptation. Its basic concept is that in a heterogeneous environment, you can’t find one individual that fits the whole environment. So, you need to reason at the population level.
· Cross-entropy method The Cross-entropy (CE) method generates candidates solutions via a parameterized probability distribution.
· Cultural algorithm (CA) consists of the population component almost indentical to that of the genetic algorithm and, in addition, a knowledge component called the belief space.

· Evolution strategies (ES) evolve individuals by means of mutation and intermediate and discrete recombination.
· Evolutionary programming (EP) involves populations of solutions with primarily mutation and selection and arbitrary representations
· Extremal optimization (EO) Unlike GAs, which work with a population of candidate solutions, EO evolves a single solution and makes local modifications to the worst components.
· Gaussian adaptation (normal or natural adaptation, abbreviated NA to avoid confusion with GA) is intended for the maximisation of manufacturing yield of signal processing systems. It relies on a certain theorem valid for all regions of acceptability and all Gaussian distributions.
· Genetic programming (GP) is a related technique popularized by John Koza in which computer programs, rather than function parameters, are optimized.
· Grouping Genetic Algorithm (GGA) is an evolution of the GA where the focus is shifted from individual items, like in classical GAs, to groups or subset of items.
· Memetic algorithm (MA), also called hybrid genetic algorithm among others, is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithms comes from memes, which–unlike genes–can adapt themselves.
· Simulated annealing (SA) is a related global optimization technique that traverses the search space by testing random mutations on an individual solution. A mutation that increases fitness is always accepted. A mutation that lowers fitness is accepted probabilistically based on the difference in fitness and a decreasing temperature parameter.
· Tabu search (TS) is similar to Simulated Annealing in that both traverse the solution space by testing mutations of an individual solution. While simulated annealing generates only one mutated solution, tabu search generates many mutated solutions and moves to the solution with the lowest energy of those generated.

Building block hypothesis

Genetic algorithms are simple to implement, but their behavior is difficult to understand. In particular it is difficult to understand why they are often successful in generating solutions of high fitness. The building block hypothesis (BBH) consists of

1. A description of an abstract adaptive mechanism that performs adaptation by recombining "building blocks", i.e. low order, low defining-length schemata with above average fitness.

2. A hypothesis that a genetic algorithm performs adaptation by implicitly and efficiently implementing this abstract adaptive mechanism.

(Goldberg 1989:41) describes the abstract adaptive mechanism as follows:

Short, low order, and highly fit schemata are sampled, recombined, and resampled to form strings of potentially higher fitness. In a way, by working with these particular schemata [the building blocks], we have reduced the complexity of our problem; instead of building high-performance strings by trying every conceivable combination, we construct better and better strings from the best partial solutions of past samplings.

Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood [building blocks], so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks.

Conclusion
Problems which appear to be particularly appropriate for solution by genetic algorithms include timetabling and scheduling problems, and many scheduling software packages are based on GAs. GAs have also been applied to engineering. Genetic algorithms are often applied as an approach to solve global optimization problems.

As a general rule of thumb genetic algorithms might be useful in problem domains that have a complex fitness landscape as recombination is designed to move the population away from local optima that a traditional hill climbing algorithm might get stuck in.

