![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img107.gif)
![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img124.gif)
![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img125.gif)
![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img18.gif)
![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img511.gif)
![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img2.gif)
![](%D0%9F%D1%80%D0%B8%D0%B1%D0%BB%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B3%D0%B8%D0%BF%D0%B5%D1%80%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%B1%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_files/img127.gif)
Если число шаров в урне очень велико, то извлечение одного, двух, трёх
шаров почти не меняет пропорцию белых и чёрных шаров в урне, так что
вероятности не очень отличаются от вероятностей в процедуре
выбора с возвращением:
Если число шаров в урне очень велико, то извлечение одного, двух, трёх
шаров почти не меняет пропорцию белых и чёрных шаров в урне, так что
вероятности не очень отличаются от вероятностей в процедуре
выбора с возвращением:
И в числителе, и в знаменателе дроби — произведение фиксированного числа
сомножителей, поэтому и дробь есть произведение
сомножителей.
Каждый из первых
сомножителей имеет вид
при некоторых
фиксированных
и
и стремится к
при
.
Каждый из оставшихся
сомножителей имеет вид
и стремится к
при
. Окончательно имеем
QED
N.Ch.