next up previous contents index
Next:  Номер первого успешного испытания   Up:  Схема Бернулли   Previous:  Схема Бернулли

§ 1. Распределение числа успехов в n испытаниях

Определение 22. Схемой Бернулли называется последовательность независимых в совокупности испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в одном испытании происходит с вероятностью , а неудача — с вероятностью .
Под независимостью в совокупности испытаний понимается независимость в совокупности любых событий, относящихся к разным испытаниям. В испытаниях схемы Бернулли, когда с одним испытанием можно связать только два взаимоисключающих события, независимость в совокупности испытаний означает, что при любом независимы в совокупности события успех в первом испытанииуспех в -ом испытании. Эти события принадлежат одному и тому же пространству элементарных исходов, полученному декартовым произведением бесконечного числа двухэлементных множеств :

Здесь буквами «у» и «н» обозначены успешный и неудачный результаты испытаний соответственно.

Обозначим через число успехов, случившихся в испытаниях схемы Бернулли. Эта величина может принимать целые значения от нуля до в зависимости от результата испытаний. Например, если все испытаний завершились неудачей, то величина равна нулю.

Теорема 10  (формула Бернулли). Для любого имеет место равенство:

Доказательство. Событие означает, что в испытаниях схемы Бернулли произошло ровно успехов. Рассмотрим один из благоприятствующих событию элементарных исходов:

когда первые испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна . Другие благоприятствующие событию элементарные исходы отличаются лишь расположением успехов на местах. Есть ровно способов расположить успехов на местах. Поэтому событие состоит из элементарных исходов, вероятность каждого из которых также равна .

QED

Определение 23. Набор чисел называется биномиальным распределением вероятностей.



N.Ch.