1. Определение элементарной конъюнкции и ДНФ.

Функции X_i и \overline{X}_i будем называть *буквами* БП X_i и, как обычно, будем считать, что $X_i^0 = X_i$, $X_i^1 = \overline{X}_i$. Конъюнкция (дизъюнкция) r, 1 < r < n букв различных БП из множества X (n) называется элементарной конъюнкцией (соответственно элементарной дизъюнкцией) ранга r от булевых переменных X (n). Дизъюнкция различных элементарных конъюнкций называется дизъюнктивной нормальной формой (ДНФ)

2. Определение нерасширяемой ДНФ.

Любая ДНФ А', которую можно получить из ДНФ А путем формирования в ней с помощью тождеств ассоциативности и коммутативности подформул вида $xiK' \lor he(xi)K''$, применения к этим подформулам тождества обобщенного склеивания $xiK' \lor xiK'' = xiK' \lor he(xi)K'' \lor K'K''$ и последующего приведения подобных, называется расширением ДНФ А.

3. Определение ДНФ сумма тупиковых.

ДНФ пересечение тупиковых (сумма тупиковых) ФАЛ f, есть дизъюнкция всех тех различных простых импликант этой ФАЛ, которые входят в любую (соответственно хотя бы в одну) тупиковую ДНФ ФАЛ f.

4. Критерий вхождения простых импликант в ДНФ пересечение тупиковых.

Дизъюнктивная нормальная форма ПТ ФАЛ f состоит из тех простых импликант ФАЛ f, которые соответствуют ядровым граням этой ФАЛ.

1. Определение импликанты и простой импликанты.

Будем говорить, что ФАЛ f' имплицирует ФАЛ f'', если $Nf'\subseteq Nf''$, то есть импликация $(f'\to f'')$ тождественно равна 1. Элементарная конъюнкция, которая имплицирует ФАЛ f, называется импликантой этой ФАЛ. Импликанта K ФАЛ f называется простой импликантой этой ФАЛ, если она не поглощается никакой другой отличной от нее импликантой ФАЛ f.

2. Определение минимальной ДНФ и кратчайшей ДНФ.

минимальная (кратчайшая) ДНФ ФАЛ f, есть ДНФ, которая имеет минимальный ранг (соответственно длину) среди всех ДНФ, реализующих f.

3. Определение ядровой точки, ядровой грани и ДНФ Квайна.

Набор $a, a \in Bn$, называется *ядровой точкой* ФАЛ $f(x1, \ldots, xn)$, если $a \in Nf$ и a входит только в одну максимальную грань ФАЛ f. При этом грань NK, являющаяся максимальной гранью ФАЛ f и содержащая точку a, считается *ядровой гранью* ФАЛ f

Дизъюнктивная нормальная форма, получающаяся из сокращенной ДНФ ФАЛ f удалением тех ЭК K, для которых грань NK покрывается ядром ФАЛ f, но не входит в него, называется $\mathcal{L}H\Phi$ K $\mathcal{L}H\Phi$ $\mathcal{L}H\Phi$

4. Формулировка утверждения, связанного с построением сокращенной ДНФ из какойлибо КНФ.

Если неприводимая ДНФ A получается из КНФ B ФАЛ f в результате раскрытия скобок и приведения подобных, то A — сокращенная ДНФ ФАЛ f.

1. Определение сокращённой ДНФ.

Дизъюнкция всех простых импликант ФАЛ f называется ее сокращенной ДНФ.

2. Определение тупиковой ДНФ.

3. Определение пучка, регулярной точки и регулярной грани.

Для ФАЛ $f(x_1, \ldots, x_n)$ и набора $a, a \in Nf$, обозначим через Пa(f) множество всех проходящих через a максимальных граней ФАЛ f, которое мы будем называть nyчком

 Φ АЛ f через точку a. Точку a, $a \in Nf$, будем называть регулярной точкой Φ АЛ f, если найдется точка β , $\beta \in Nf$, для которой имеет место строгое включение $\Pi\beta$ $(f) \subset \Pi a$ (f).

Грань NK ФАЛ f называется регулярной гранью этойФАЛ, если все точки NK регулярны.

4. Формулировка утверждения, связанного с построением сокращённой ДНФ из какойлибо ДНФ.

Из любой ДНФ A ФАЛ f можно получить сокращенную ДНФ этой ФАЛ в результате построения последовательных строгих расширений и приведения подобных до получения неприводимой ДНФ, не имеющей строгих расширений.

1. Определение π -схемы и её сложности.

Схемы, моделирующие ДНФ или КНФ, являются частным случаем т. н. параллельно-последовательных КСили, иначе, п-схем. Простейшей n-схемой считается любая (1, 1)-КС, которая состоит из одного контакта, соединяющего полюса. Если n-схемы $\Sigma 1$ и $\Sigma 2$ уже определены, то (1, 1)-КС $\Sigma'(\Sigma'')$, которая получается в результате их параллельного (соответственно последовательного) соединения тоже является п-схемой.

2. Определение приведенной СФЭ.

Будем называть (1,m)-КС приведенной, если все изолированные вершины Σ являются ее полюсами, а все контакты и остальные вершины Σ принадлежат простым проводящим цепям, соединяющим ее вход и выходы.

3. Определение величины $\left\|U^{\,\phi}[D,n] ight\|$ и её верхняя оценка.

Обозначим через UCБ (L, n) (UФБ(L, n) и UФБ[D, n]) множество приведенных СФЭ $\Sigma = \Sigma(x1, \ldots, xn; z1)$ (соответственно формул F = F ($x1, \ldots, xn$)) над базисом Б, для которых $L(\Sigma) <= L$ (соответственно L(F) <= L и D(F) <= D), $L(\Sigma) -$ сложность Σ , то есть число всех ее Φ 3; $D(\Sigma) -$ глубина Σ , то есть максимальная глубина ее вершин.

$$\left\| \mathcal{U}^{\Phi}\left[D,n\right] \right\| \leqslant \left(32n\right)^{2^{D}}$$

4. Утверждение о соотношениях между рангом, сложностью и глубиной одной и той же формулы.

$$R(\mathfrak{F}) \leq L(\mathfrak{F}) + 1 \leq 2^{D(\mathfrak{F})}$$
.

Для формулы F, F ∈ UФ, выполняются неравенства

1. Определение СФЭ в базисе {&, ∨, ¬} и её глубины.

Схемой из функциональных элементов над базисом Б называется ориентированная ациклическая упорядоченная сеть Σ, входная выборка которой состоит из всех истоков Σ , а вершины помечены следующим образом:

- 1. каждому входу (выходу) Σ сопоставлена БП из X (соответственно Z), являющаяся пометкой связанной с ним вершины, причем различным входам (выходам)сопоставлены различные БП, а упорядоченность вершин во входной и выходной выборках Σ определяется упорядоченностью сопоставленных им БП;
- 2. каждая отличная от истока вершина v схемы Σ помечена Φ С φi , где $ki=d+\Sigma$ (v).

 $D(\Sigma)$ — *глубина* Σ , то есть максимальная глубина ее вершин.

2. Определение подобных формул.

Формулы, получающиеся друг из друга эквивалентными преобразованиями на основе тождеств коммутативности и ассоциативности, называются подобными.

3. Определение величины $\|U^{\kappa}(L,n)\|$ и её верхняя оценка.

Uк (L, n) - множество приведенных (1, 1)-схем Σ из UA от $Б\Pi$ X (n), для которых $L(\Sigma) <= L$. Кол-во попарно неэквивалентных КС от n БП сложности <= L

$$\left\| \mathcal{U}^{K}\left(L,n\right) \right\| \leqslant \left(8nL\right) ^{L}$$

Определение альтернирования формулы с поднятыми отрицаниями и утверждение об оптимизации подобных формул по глубине.

Кол-во смены & -> V и наоборот по целям (от корня к листьям)

$$D(\check{\mathcal{F}}) \leq \lceil \log (L(\mathcal{F}) + 1) \rceil + \text{Alt } (\mathcal{F})$$

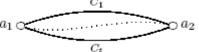
Для любой формулы F из UФ существует подобная ей формула $\check{}$ F такая, что $D\left(\check{\mathfrak{T}}\right)\leqslant\left\lceil\log\left(L\left(\mathfrak{F}\right)+1\right)\right\rceil+\mathrm{Alt}\,\left(\mathfrak{F}\right)$

1. Определение (1,1) – КС от БП $x_1,...,x_n$ и её функционирования (той ФАЛ, которую она реализует).

Сеть Σ с входами a_1,\ldots,a_p и выходами a_1,\ldots,a_q , в которой все ребра (дуги) помечены переменными x_1,\ldots,x_n или

их отрицаниями $x1, \ldots, xn$, называется (p, q)-контактной схемой (КС) от БП $x1, \ldots, xn$ $g(x1, \ldots, xn) = K(C1) \lor \ldots \lor K(Ct)$ можно использовать для построения (1, 1)-КС Σ , в которой ФАЛ проводимости от входа a1к выходу a2 описывается заданной ДНФ вида $A = K1 \lor ... \lor Kt$,

где $K1, \ldots, Kt$ — различные ЭК, и которая «моделирует» ДНФ А. Указанная контактная схема Σ получается в результате проведения из a1 в a2 цепей $C1, \ldots, Ct$ без общих контактов и внутренних вершин так, что K (Ci) = $Ki, i = 1, \ldots, t$



2. Определение эквивалентности двух СФЭ.

эквивалентными, если они реализуют равные системы ФАЛ

Эквивалентность схем Σ' и Σ'' из U имеет место тогда и только тогда, когда Σ' и Σ'' реализуют равные системы (матрицы) ФАЛ предполагается, что соответствующие друг другу полюса (выходы, входы) в Σ' и Σ'' имеют одинаковые пометки, а эквивалентность Σ' и Σ'' записывается в виде тождества $t:\Sigma'\sim \Sigma$

3. Определение величины $\left\|U^{\,arphi}(L,n) ight\|$ и её верхняя оценка.

множество приведенных формул $F = F(x_1, \ldots, x_n)$ над базисом $E(x_n) = E(x_n)$ над базисом $E(x_n) = E(x_n)$ $\|\mathcal{U}^{\Phi}(L, n)\| \leq (32n)^{L+1}$

4. Определение вычисляющей программы (ВП) и ее ширины, утверждение о ширине ВП, моделирующей ДНФ.

Схема $\Sigma, \Sigma \in \mathsf{UC}$ Б с монотонной нумерацией вершин называется вычисляющей программой (ВП) над базисом Б для любой дуги номер вершины, из которой она исходит, больше номера вершины, в которую эта дуга входит.

Максимальное число отрезков вида [i, ai), где $i \in (n, p]$, имеющих непустое пересечение, называется $\underline{u}\underline{u}\underline{p}\underline{u}\underline{n}\underline{v}$ в определяет минимальное число ячеек памяти, необходимых для хранения ее внутренних БП $\underline{u}\underline{n}+1,\ldots,\underline{u}$ где $\underline{a}\underline{i}$ —максимальный номер команды, в которой встречается $\underline{u}\underline{i}$.

число ФЭ ВП Σ характеризует время выполнения ее вычисляющих команд на одном процессоре,

1. Дать определение частично-упорядоченного множества (ЧУМ), его ширины и ранжированного ЧУМ.

Отношение, обладающее свойствами рефлексивности, транзитивности и антисимметричности, будем называть отношением α частичного порядка. Если τ — отношение частичного порядка на множестве α , то пару α 0 будем называть α 0 частичного порядка на множестве α 1.

Максимальная мощность цепей (антицепей) частично упорядоченного множества называется его *длиной* (соответственно импиной).

Частично упорядоченное множество (A, τ) длины t называется ранжированным частично упорядоченным множеством, если все его неуплотняемые цепи имеют мощность t.

2. Выписать КНФ для ФАЛ теста для таблицы и цели контроля {(1,2), (1,3), (2,4), (4,5)}

0	1	1	0	1
1	0	0	1	0
1	1	0	1	1
0	0	1	1	0

(K1 V K2)(K1 V K2 V K3 V K4)(K1 V K2 V K4)(K1 V K2 V K4)

3. Дать определение функции Шеннона λ (n) для длины сокращенной ДНФ и привести её оценки.

Число ЭК (ЭД) в ДНФ (соответственно КНФ) А называется ее длиной и обозначается через λ (A).

Для любого $n, n \in \mathbb{N}$, и для почти всех ФАЛ $f, f \in P2$ (n), имеют место соотношения:

$$\begin{split} \lambda\left(n\right) &= 2^{n-1}, & R\left(n\right) &= n \cdot 2^{n-1}, \\ \lambda\left(f\right) &\lesssim \frac{3}{4}2^{n-1}, & R\left(f\right) &\lesssim \frac{3}{4}n \cdot 2^{n-1} \end{split}$$

4. Сформулировать утверждение об особенностях ДНФ для монотонных ФАЛ.

Сокращенная ДНФ A монотонной ФАЛ f \in P2 (n), является единственной тупиковой ДНФ этой ФАЛ и имеет вид:

$$\mathfrak{A}(x_1, ..., x_n) = \bigvee_{\beta \in N_{+}^{+}} K_{\beta}^{+}(x_1, ..., x_n).$$

Сопоставим каждому набору β из Bn, монотонную ЭК $K+\beta$ от БП X (n), состоящую из тех и только тех букв xj, $j \in [1, n]$, для которых β j = 1,

1. Дать определение покрытия матрицы и ФАЛ покрытия.

Рассмотрим ФАЛ F(y), для которой $F(\beta)=1$ тогда и только тогда, когда система строк матрицы M с номерами из $I(\beta)$ образует ее покрытие, и будемназывать эту ФАЛ функцией покрытия матрицы M.

2. Выписать сокращённую ДНФ монотонной ФАЛ с множеством нижних единиц {(0011), (1001), (0110)}.

'x1'x2x3x4Vx1'x2'x3x4V'x1x2x3'x4

3. Дать определение функции Шеннона λ (n) для длины ДНФ и указать её значение.

Число ЭК (ЭД) в ДНФ (соответственно КНФ) А называется ее длиной и обозначается через λ (A). Для любого $n, n \in \mathbb{N}$, и для почти всех ФАЛ $f, f \in P2$ (n), имеют место соотношения:

$$\lambda(n) = 2^{n-1}$$

4. Сформулировать утверждение о длине диагностического теста для почти всех таблиц.

Мощность теста называется также его длиной. Длина любого тупикового диагностического

теста для отделимой по столбцам матрицы из множества Вр,s заключена в пределах от $\lceil \log s
ceil$ до (s-1).

а. Дать определение теста для таблицы и заданной цели контроля.

Пусть $M, M \in Bp, s, -$ отделимая по столбцам матрица, а N - связанная с ней цель контроля.

Сопоставим i-й строке, $i \in [1, p]$, матрицы M БП yi, а каждому набору β , $\beta \in Bp$, значений этих переменных $y = (y1, \ldots, yp)$ — множество строк матрицы M с номерами из множества I = I (β) $\subseteq [1, p]$, где $i \in I$ (β) тогда и только тогда, когда $\beta _i = 1$. Рассмотрим ФАЛ F (y), для которой F (β) = 1 тогда и только тогда, когда система строк матрицы M с номерами из I (β) образует тест для (M, N), и будем называть эту ФАЛ ϕ ункцией теста для (M, N).

b. Выписать максимальную антицепь частично-упорядоченного множества целых чисел отрезка [1, 10] с отношениями делимости.

с. Дать определение функции Шеннона R(n) ранга ДНФ и указать ее значение.

$$R(n) = n \cdot 2^{n-1}$$

число вхождений в формулу символов переменных

d. Сформулировать утверждение о длине градиентного покрытия.

Пусть для действительного γ , $0 < \gamma < 1$, B каждом столбце матрицы M, $M \in Bp$, S, имеется не меньше, чем $\gamma \cdot p$, единиц. Тогда покрытие

матрицы М, получаемое с помощью градиентного алгоритма, имеет длину не больше, чем
$$\left| \frac{1}{\gamma} \ln^+{(\gamma s)} \right| + \frac{1}{\gamma} \ln^+{(\gamma s)}$$

1. Дать определение тождества для формул, и его подстановки.

Формулы F' и F'', реализующие равные функции f' и F'', называются равными или, иначе, эквивалентными. При этом равенство вида t:F'=F'' считается тождеством.Для того, чтобы выделить набор $x=(xi1,\ldots,xin)$, который состоит из всех различных БП алфавита X, встречающихся в формуле F и перечисленных в порядке возрастания их номеров, будем записывать ее в виде F=F(x). При этом формулу, которая получается из F в результате замены

если указанную подстановку применить к обеим частям тождества t: F' = F'', где F' = F''(x) и F'' = F''(x), мы получим тождество

$$\widehat{t}:\ \widehat{\mathfrak{I}}'=\widehat{\mathfrak{I}}'',$$
 которое называется подстановкой для тождества $t.$

2. Дать определение подсхемы КС и указать правила применение к ней тождеств.

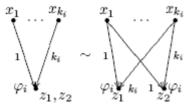
С хема Σ' называется *подсхемой схемы* Σ , если $V(\Sigma')\subseteq V$ (Σ) , $E(\Sigma')\subseteq E$ (Σ) и любая вершина $v,v\in V$ (Σ_-) , которая либо относится к множеству входов (выходов) Σ , либо служит конечной (соответственно, начальной) вершиной некоторого ребра из $E(\Sigma)\setminus E(\Sigma_-)$, является входом (соответственно, выходом) Σ' . Из определений следует, что для $C\Phi$ 9 и КС с неразделенными полюсами, как и для формул, имеет место принцип эквивалентной замены. При этом все введенные выше для случая эквивалентных преобразований формул понятия (однократная и кратная выводимость, полнота системы тождеств и др.), а также связанные с ними обозначения переносятся на случай ЭП указанных классов схем без изменений.

3. Привести основные тождества, связанные с:

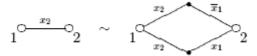
а) законом де Моргана для конъюнкции - в классах формул и СФЭ;

$$t_{\neg}^{M} : \overline{(x_1)} = x_1, \quad t_{\circ}^{M} : \overline{(x_1 \circ x_2)} = (\overline{x}_1) \diamond (\overline{x}_2),$$

b) ветвлением выхода ФЭ отрицания - в классе СФЭ;



с) введением фиктивной БП в контакт – в классе КС.



4. Сформулировать утверждение о переходе от КПСТ для ЭП формул к КПСТ для ЭП СФЭ.

Пусть $\tau - K\Pi CT$ для ЭП формул из UФБ, а Π' и $\Pi - c$ истемы тождеств для перехода от базиса Ξ к базису Ξ' и от базиса Ξ' к базису Ξ соответственно. Тогда система тождеств $\{\Pi'(\tau),\Pi'(\Pi)\}$ является КПСТ для ЭП формул из UФБ

1. Дать определение тождества для СФЭ, и его подстановки.

эквивалентностьскем Σ' и Σ'' из U имеет место тогда и только тогда, когда Σ' и Σ'' реализуют равные системы (матрицы) ФАЛ предполагается, что соответствующие друг другу полюса (выходы, входы) в Σ' и Σ'' имеют одинаковые пометки, а эквивалентность Σ' и Σ'' записывается в виде тождества $t:\Sigma'\sim\Sigma''$. Для схем из U, как и для формул, определяется ряд «простейших»

$$\widehat{t}: \Sigma' \sim \Sigma''$$

преобразований, сохраняющих эквивалентность схем, которые называются *подстановками*. Тождество которое получается в результате применения одной и той же подстановки к обеим частям тождества $t: \Sigma' \sim \Sigma''$, называется *подстановкой тождества t*.

2. Дать определение подформулы данной формулы и указать правила применения к ней тождеств.

Аналогичный переход от F к F' в результате применения одного из тождеств системы τ (нескольких последовательных применений тождеств из τ) будем записывать в виде однократной (соответственно кратной) выводимости вида F $\to \tau$ F' (соответственно F \Rightarrow | τ F'). При этом считается, что тождество t: F = F' выводится из системы тождеств τ

3. Привести основные тождества, связанные с:

а) подстановкой константы 0 в конъюнкцию - в классах формул и СФЭ;

$$t_{0,\vee}^{\Pi K}: x_1 \vee x_2 \cdot \overline{x}_2 = x_1,$$

b) снятием "висячего" входа - в классе СФЭ;

$$\overset{x_1}{\bullet} \sim \varnothing$$

c) формульным тождеством вида $x \cdot \bar{x} = 0$ – в классе КС.

$$1^{\circ} \xrightarrow{x_1} \xrightarrow{\overline{x_1}} \circ_2 \sim 1^{\circ} \circ_2$$

4. Дать определение разделяющей КС и сформулировать лемму Шеннона.

Схема называется разделительной по входам(выходам), если ФАЛ проводимости между любыми ее различными входами (соответственно выходами) равна 0. Пусть КС Σ является результатом стыковки вида $\Sigma = \Sigma''$ (Σ'), а Γ , Γ' и Γ'' — матрицы,

реализуемые КС Σ , Σ' и Σ'' соответственно. Тогда $F\geqslant F'\cdot F''$ и $F=F'\cdot F''$, если КС Σ'' разделительна по входам или КС Σ' разделительна по выходам.

1. Дать определение тождества для КС, и его подстановки.

эквивалентность КС $\Sigma' = \Sigma'$ ($x1, \ldots, xn$; $a1, \ldots, am$) и $\Sigma'' = \Sigma''$ ($x1, \ldots, xn$; $a1, \ldots, am$) означает, что для любых i и j из отрезка [1,m] ФАЛ проводимости от ai к aj в КС Σ' равна ФАЛ проводимости от ai к aj в КС Σ'' . Определим подстановку для КС как переименование (с возможным отождествлением и инвертированием) БП, а также переименование (с возможным отождествлением и снятием) полюсов.

2. Дать определение подсхемы СФЭ и указать правила применения к ней тождеств.

С хема Σ называется *подсхемой схемы* Σ , если $V(\Sigma')\subseteq V$ (Σ), $E(\Sigma')\subseteq E$ (Σ) и любая вершина $v,v\in V$ (Σ'), которая либо относится к множеству входов (выходов) Σ , либо служит конечной (соответственно, начальной) вершиной некоторого ребра из $E(\Sigma)\setminus E(\Sigma')$, является входом (соответственно, выходом) Σ' .

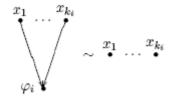
Тождества: отождествление переменных, соединение/разделение полюсов

3. Привести основные тождества, связанные с:

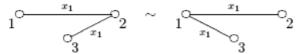
а) дистрибутивностью конъюнкции относительно дизъюнкций – в классах формул и СФЭ;

$$t^{\mathcal{D}}_{\circ,\diamond}:\ x_1\circ(x_2\diamond x_3)=(x_1\circ x_2)\diamond(x_1\circ x_3)$$

b) снятием "висячего" ФЭ отрицания - в классе СФЭ;



с) перебрасыванием контакта в трюхполюсной схеме - в классе КС.



4. Дать определение суммарного цикломатического числа КС и сформулировать утверждение о его изменениях при применении основных тождеств.

|E(G)| - |V(G)| + |C(G)| называется цикломатическим числом графа G. множество вершин V = V(G) и множество ребер E = E(G) множество всех связных компонент обозначается через C(G)

Для КС Σ от БП $x1,\ldots,xn$ и набора $a,a\in Bn$, определим величину $\Theta(\Sigma,a)=|E|(\Sigma|a)|-|V|(\Sigma|a)|+|c|(\Sigma|a)|$, которая задает цикломатическое число графа $\Sigma|a$. Положим, далее, $\Theta(\Sigma)=a\in Bn$ $\Theta(\Sigma,a)$.

Если $\Sigma_{-}(x1,\ldots,xn)$ \Rightarrow $\{t1-t5\}\Sigma''(x1,\ldots,xn)$, то $\Theta(\Sigma')=\Theta(\Sigma'')$, а если Σ' \Rightarrow $\tau k\Sigma''$, где k< n, то $\Theta(\Sigma')-\Theta(\Sigma'')$ делится на 2n-k.

- 1. Определение глубины D(f) ФАЛ $f(\mathbf{x}_1...\mathbf{x}_n)$ и её тривиальная нижняя оценка для существенной ФАЛ f. $D(f)=\min D(\Sigma)$ - глубина ФАЛ f относительно функционала L Σ реал f.
- 2. Определение функции Шеннона $L^c(n)$ и её верхняя оценка, получаемая методом Шеннона. $L(n) = \max L(f)$, f принадлежит P2(n)-Функция Шеннона для класса U^c относительно функционала сложности L.

$$L^{C}(n) \lesssim 8\frac{2^{n}}{n}$$
.

 $3.\;\;$ Нижняя мощностная оценка функции Шеннона L $^{\circ}$ (n) и то соотношение, из которого она выводится.

$$L^{\Phi}\left(n
ight)\geqslant\left(1-arepsilon\left(n
ight)
ight)rac{2^{n}}{\log n},$$
 $\left|\mathcal{U}^{\Phi}\left(L,n
ight)
ight|\leqslant\left(32n
ight)^{L+1}$ γ = 0, a = 32 n , y = $L\Phi(n)$ + 1, если U = U Φ ;

- 4. Верхняя оценка функции Шеннона $L^k(n)$, получаемая асимптотически наилучшим способом.
- 5. Утверждение о нижней оценке сложности КС, реализующей заданную систему ФАЛ, и асимптотика сложности контактного дешифратора.

Для любой ФАЛ $f, f \in P_2(n)$, существует реализующая ее КС Σ_f такая, что

$$\begin{split} L\left(\Sigma_{f}\right) &\leqslant \frac{2^{n}}{n} \left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right) \\ L^{\mathrm{K}}\left(Q_{n}\right) &\leqslant 2^{n} + O\left(\frac{2^{n}}{n}\right) \quad L^{\mathrm{K}}\left(Q_{n}\right) \sim 2^{n} \quad L^{\mathrm{K}}\left(J_{n}\right) \sim 2^{n+1} \end{split}$$

1. Определение сложности $L^{c}(f)$ ФАЛ f в классе СФЭ и её тривиальная нижняя оценка для существенной ФАЛ f. $L^{c}(f)=\min L(\Sigma)$ - сложность ФАЛ f в классе U ^с относ функционала L Σ peaл f, $U^{c} \ni \Sigma$

 $L^{c}(f)>=n-1$

- 2. Определение функции Шеннона L $^{\circ}$ (n) и её верхняя нижняя оценка, получаемая с помощью моделирования совершенной ДНФ на основе контактного дерева.
- $L(n) = \max L(f)$, f принадлежит P2(n)-Функция Шеннона для класса U^{Φ} относительно функционала сложности L.
 - 3. Нижняя мощностная оценка функции Шеннона Lk(n) и то соотношение, из которого она выводится.

$$L^{\mathrm{K}}\left(n
ight)\geqslant\left(1-arepsilon\left(n
ight)
ight)rac{2^{n}}{n}$$

$$\left|\mathfrak{U}^{\mathrm{K}}\left(L,n
ight)
ight|\leqslant\left(8nL
ight)^{L}_{\ \ \gamma=1,\ a=8n,\ \gamma=L\mathrm{K}(n),\ \mathrm{если}\ \mathrm{U}=\mathrm{UK};$$

4. Верхняя оценка функции Шеннона D(n), получаемая асимптотически наилучшим способом

 $D(\mathcal{F}_f) \leq n - \log \log n + 8 + o(1)$

Определение регулярного множества наборов единичного куба и формулировка утверждения о разбиении куба на такие подмножества.

Множество δ , $\delta \subseteq Bq$, называется m-регулярным множеством наборов куба Bq, если m < q, $|\delta| = 2m$, и все префиксы длины mнаборов из δ различны. Для любого m-регулярного множества наборов δ , $\delta \subseteq Bq$, система множеств $\Delta = (\delta 1, \dots, \delta 2q - m)$, где $\delta i =$ $\delta \oplus a$ и v(a) = i-1 при всех $i, i = 1, \ldots, 2q-m$, образует разбиение куба Bq на m-регулярные подмножества.

1. Определение сложности $\mathsf{L}^\mathsf{k}(f)$ ФАЛ $f(\mathsf{x}_1...\mathsf{x}_n)$ в классе КС и её тривиальная нижняя оценка для существенной Φ АЛ f.

 $L^{k}(f)>=n$

- 2. Определение функции Шеннона D(n) и её верхняя оценка, получаемая с помощью моделирования совершенной ДНФ. D(n) = max D(f), f принадлежит P2(n)-Функция Шеннона для класса U относительно функционала глубины D.
 - 3. Нижняя мощностная оценка функции Шеннона $L^c(n)$ и то соотношение, из которого она выводится.

$$L^{\mathrm{C}}\left(n
ight)\geqslant\left(1+arepsilon\left(n
ight))rac{2^{n}}{n}$$

$$\left|\mathfrak{U}^{\mathrm{C}}\left(L,n
ight)
ight|\leqslant\left(32\left(L+n
ight)
ight)^{L+1}$$
 γ = 1, a = 32, γ = $L\mathrm{C}(n)$ + n , если U = UC ;

- 4. Верхняя оценка функции Шеннона L $^{\circ}$ (n), получаемая асимптотически наилучшим способом. $L^{\Phi}(n) < 2^n/logn$
- 5. Определение ДУМ и описание стандартного ДУМ.

Множество ФАЛ $G, G \subseteq P2$ (m), называется дизъюнктивно-универсальным множеством (ДУМ) порядка m и ранга p, если любая ФАЛ $g,g\in P2$ (m), может быть представлена в виде $g=g1\vee\ldots\vee gp$, где $gi\in G$ при всех $i,i=1,\ldots,p$. Стандартный способ построения таких множеств связан с разбиениями единичного куба. Пусть $\Pi = (n1, \dots, np)$ — разбиение куба Bm, и пусть для всех $i, i = 1, \ldots, p$, ФАЛ χi $(x1, \ldots, xm)$ — характеристическая ФАЛ множества πi , а G(i) — множество всех тех ФАЛ $g, g \in P2$ (m), которые обращаются в 0 вне πi . Заметим, что множество ФАЛ G вида $G = G(1) \cup \ldots \cup G(p)$ является ДУМ порядка m и ранга p. Действительно, любая ФАЛ $g, g \in P2$ (m), может быть представлена в

виде $g=g1\lor\ldots\lor gp$, где $gi=\chi ig$ и, следовательно, $gi\in G(i)$ для всех $i,\,i=1,\ldots,\,p$.

1. Определение сложности $L^{\Phi}(f)$ ФАЛ $f(x_1...x_n)$ в классе формул и её тривиальная нижняя оценка для существенной ФАЛ.

 $\mathsf{L}^{\mathbb{Q}}(f) = \mathsf{minL}(\Sigma)$ - сложность ФАЛ f в классе U $^{\mathbb{Q}}$ относ функционала L Σ реал f, U $^{\mathbb{Q}}$ Э Σ

 $L^{\Phi}(f) > = n-1$

2. Определение функции Шеннона $L^k(n)$ и её верхняя оценка, получаемая методом Шеннона.

 $L(n) = \max L(f)$, f принадлежит P2(n)-Функция Шеннона для класса U^k относительно функционала сложности L.

$$L^{K}(n) \lesssim 4\frac{2^{n}}{n}$$

3. Нижняя мощностная оценка функции Шеннона D(n) и то соотношение, из которого она выводится.

$$D\left(n\right)\geqslant n-\log\log\underline{n}-\varepsilon\left(n\right)$$

 $\left| \mathcal{U}^{\Phi}\left[T,n \right] \right| \leqslant \left(64n \right)^{2^T} \ \left\| \mathcal{U}\left(\Psi\left(n \right),n \right) \right\| = 2^{2^n}$ Аналогичным образом на основе неравенства и равенства с использованием леммы 4.1, где $q = 22n, y = 2D(n), \ y = 0, \ a = 1$ и a = 64n, устанавливается справедливость при $\varepsilon\left(n \right) = 12/\log n.$

- 4. Верхняя оценка функции Шеннона $L^{c}(n)$, получаемая асимптотически наилучшим способом.
- 5. Формулировка утверждения, из которого следует минимальность контактного дерева в классе разделительных КС.