Вариант 1

Задача 0. Слово — это конечный непустой список букв фиксированного конечного алфавита. Текст — это конечный непустой список слов. Построить логическую программу, которая для заданного текста L вычисляет два бесповторных списка X и Y. Список X состоит из всех тех слов текста L, которые встречаются в нем ровно один раз, а список Y — из всех остальных слов текста L. Запрос к программе должен иметь вид ? G(L, X, Y).

Задача 1. Используя константные, функциональные и предикатные символы алфавита (см. Приложение 1), построить замкнутую формулу логики предикатов, соответствующую следующему утверждению.

«Ни одна последовательность положительных действительных чисел не имеет ни одной отрицательной предельной точки»

Задача 2. Для заданной формулы φ выяснить, применяя метод семантических таблиц, является ли эта формула общезначимой.

$$\forall y(\exists y \neg P(y) \ \rightarrow \ \exists x R(x)) \rightarrow \forall x \exists y (P(f(x)) \lor R(y))$$

Задача 3. Для заданной формулы φ выяснить, применяя метод резолюций, является ли эта формула общезначимой.

$$\exists x \exists y (P(x,y) \rightarrow R(x)) \rightarrow \forall x (\neg \exists y P(x,y) \lor R(x))$$

Задача 4. Для заданного запроса G=? A(Y,X), $\mathbf{not}(A(X,Y))$ к заданной логической программе $\mathcal P$ построить на основе стандартной стратегии вычислений (с использованием операторов отсечения и отрицания) дерево SLD-резолютивных вычислений и определить множество вычисленных ответов. Примечание: заглавными буквами начинаются имена переменных и предикатов, а строчными буквами — имена констант и функций.

$$\mathcal{P}: \quad A(X,c) \quad \leftarrow \quad E(X), !, \mathbf{not}(B(X)); \\ A(X,Y) \quad \leftarrow \quad B(g(X)), E(Y); \\ B(g(c)) \quad \leftarrow \quad !; \\ B(X) \quad \leftarrow \quad B(g(X)); \\ E(b) \quad \leftarrow \quad ;$$

Задача 5. Сформулируйте теорему Левенгейма-Сколема. Верно ли, что из этой теоремы следует, что каждая выполнимая формула логики предикатов имеет модель, предметной областью которой является то или иное множество натуральных чисел? Ответ обосновать.

Задача 6. Сколько существует различных эрбрановских интерпретаций в сигнатуре σ , состоящей только из одного одноместного предикатного символа P и из одной предметной константы c? Ответ обосновать.

Задача 7. Верно ли, что если запрос G(x) к хорновской логической программе имеет хотя бы одно успешное вычисление, то этот запрос имеет хотя бы один основной правильный ответ? Ответ обосновать.

Задача 8. Что такое допущение замкнутости мира? Верно ли, что $\varphi \lor \psi \models_{CWA} \neg (\varphi \& \psi)$?

Задача 9. Известно, что некоторая модель для формулы φ не является моделью для формулы ψ . Какие из приведенных ниже утверждений всегда верны для любых замкнутых формул φ и ψ ?

- 1. Не существует успешного табличного вывода из таблицы $T' = \langle \{\psi\}, \{\varphi\} \rangle$, потому что...
- 2. Не существует успешного табличного вывода из таблицы $T = \langle \{\varphi\}, \{\psi\} \rangle$, потому что...
- 3. Формула φ является логическим следствием формулы ψ , потому что...
- 4. Формула ψ является логическим следствием формулы φ , потому что...
- 5. Все приведенные выше утверждения в общем случае неверны, потому что...

Задача 10. Пусть задано некоторое непустое множество дизъюнктов S_0 . Пусть S_1 — это множество всех формул, резолютивно выводимых из множества дизъюнктов S_0 . Какие из приведенных ниже утверждений всегда справедливы и почему?

- 1. Если каждый дизъюнкт множества S_0 выполним, то и каждый дизъюнкт множества S_1 выполним, потому что....
- 2. Если каждый дизъюнкт множества S_1 выполним, то множество дизъюнктов S_0 имеет модель, потому что....
- 3. Если множество дизъюнктов S_0 имеет модель, то множество дизъюнктов S_1 имеет модель, потому что....
- 4. Все приведенные выше утверждения всегда верны, потому что...

Задача 11. Пусть \mathcal{P} — это хорновская логическая программа, а S — множество всех дизъюнктов, соответствующих программным утверждениям программы \mathcal{P} . Известно, что для наименьшей эрбрановской модели $\mathbf{M}_{\mathcal{P}}$ программы \mathcal{P} выполняется соотношение $\mathbf{M}_{\mathcal{P}} = \emptyset$. Какие из приведенных ниже утверждений будут при этом всегда верны и почему?

- 1. Система дизъюнктов S выполняется в каждой эрбрановской интерпретации, потому что...
- 2. Из системы дизъюнктов S нельзя вывести ни одной резольвенты, потому что...
- 3. Система дизъюнктов S является противоречивой, потому что...
- 4. В каждом дизъюнкте из системе S есть хотя бы один атом со связкой отрицания \neg , потому что...
- 5. Все приведенные выше утверждения всегда неверны, потому что...

Задача 12. Какие из приведенных ниже утверждений справедливы и почему?

- 1. Любая арифметическая функция, вычислимая на машине Тьюринга, может быть вычислена подходящей хорновской логической программы с использованием стандартной стратегии вычисления, потому что...
- 2. Любая арифметическая функция, вычислимая на машине Тьюринга, может быть вычислена подходящей логической программой, но лишь с использованием нестандартной стратегии вычисления, потому что...
- 3. Любая арифметическая функция, вычислимая на машине Тьюринга, может быть вычислена подходящей логической программы с использованием стандартной стратегии вычисления, но лишь при добавлении операторов is и **not**, потому что...
- 4. Существуют арифметическая функция, вычислимая на машине Тьюринга, для вычисления которой нет логической программы даже в случае использования операторов **is** и **not**, потому что...

Вариант 2

Задача 0. Слово — это конечный непустой список букв фиксированного конечного алфавита. Текст — это конечный непустой список слов. Построить логическую программу, которая для заданных текстов L_1 и L_2 вычисляет бесповторный список X, состоящий из всех тех слов текста L_1 , которые имеют длину 4 и не встречаются в списке L_2 . Запрос к программе должен иметь вид ? $G(L_1, L_2, X)$.

Задача 1. Используя константные, функциональные и предикатные символы алфавита (см. Приложение 1), построить замкнутую формулу логики предикатов, соответствующую следующему утверждению.

«Всякая неограниченная сверху последовательность действительных чисел не имеет предела.»

Задача 2. Для заданной формулы φ выяснить, применяя метод семантических таблиц, является ли эта формула общезначимой.

$$\exists x (\forall x P(x, x) \lor \exists x \neg R(x)) \rightarrow \exists x (R(x) \rightarrow \exists y P(f(x), y))$$

Задача 3. Для заданной формулы φ выяснить, применяя метод резолюций, является ли эта формула общезначимой.

$$\forall x (P(x,x) \rightarrow (R(x) \rightarrow \forall x (\forall x P(x,x) \& R(x))))$$

Задача 4. Для заданного запроса G=P(Y,X), $\mathbf{not}(P(X,Y))$ к заданной логической программе $\mathcal P$ построить на основе стандартной стратегии вычислений (с использованием операторов отсечения и отрицания) дерево SLD-резолютивных вычислений и определить множество вычисленных ответов. Примечание: заглавными буквами начинаются имена переменных и предикатов, а строчными буквами — имена констант и функций.

$$\begin{array}{ccccc} \mathcal{P}: & R(g(b)) & \leftarrow & !; \\ & R(X) & \leftarrow & R(g(X)); \\ & P(X,b) & \leftarrow & Q(X), !, \mathbf{not}(R(X)); \\ & P(X,Y) & \leftarrow & R(g(X)), Q(Y); \\ & Q(a) & \leftarrow & ; \end{array}$$

- **Задача 5.** Сформулируйте теорему компактности Мальцева. Следует ли из этой теоремы утверждение: «Если множество предложений не имеет модели, то хотя бы одно предложение является противоречивым»? Ответ обосновать.
- **Задача 6.** Вычислите композицию подстановок $\{x/y\}\{y/z\}\{z/x\}\{x/y\}$.
- Задача 7. Сформулируйте определение эрбрановской интерпретации. Что общего у всех эрбрановских интерпретаций заданной сигнатуры?
- **Задача 8.** Сформулируйте теорему полноты для хорновских логических программ. Существуют ли такие правильные ответы на запрос G к хорновской логической программе \mathcal{P} , которые не могут быть вычислены? Ответ обосновать.
- **Задача 9.** Известно, что для семантической таблицы $T = \langle \{\varphi\}, \{\psi\} \rangle$ нельзя построить ни одного успешного табличного вывода. Какие из приведенных ниже утверждений всегда верны для любых замкнутых формул φ и ψ ?
 - 1. Таблица $T = \langle \{\varphi\}, \{\psi\} \rangle$ не является выполнимой, потому что...
 - 2. Для таблицы $T' = \langle \{\psi\}, \{\varphi\} \rangle$ также не существует ни одного успешного табличного вывода, потому что...
 - 3. Формула φ не является логическим следствием формулы ψ , потому что...
 - 4. Формула ψ не является логическим следствием формулы φ , потому что...
 - 5. Все приведенные выше утверждения в общем случае неверны, потому что...

- Задача 10. Предположим, что в правило резолюции было внесено следующее изменение: резольвентой дизъюнктов $D_1 = D_1' \vee L_1$ и $D_2 = D_2' \vee \neg L_2$ объявляется всякий дизъюнкт $D_0 = (D_1' \vee D_2')\eta$, где η некоторый унификатор (необязательно наиболее общий) литер L_1 и L_2 . Какие из приведенных ниже утверждений будут справедливы и почему?
 - 1. После такого изменения и теорема корректности резолютивного вывода и теорема полноты резолютивного вывода уже будут неверны, потому что...
 - 2. После такого изменения теорема корректности резолютивного вывода остается верной, а теорема полноты резолютивного вывода уже будет неверна, потому что...
 - 3. После такого изменения теорема полноты резолютивного вывода остается верной, а теорема корректности резолютивного вывода уже будет неверна, потому что...
 - 4. После такого изменения и теорема корректности резолютивного вывода и теорема полноты резолютивного вывода остаются верными, потому что...
- **Задача 11.** Пусть φ формула логики предикатов в сколемовской стандартной форме. Какие из приведенных ниже утверждений верны и почему?
 - 1. Если формула φ выполнима, то φ выполнима хотя бы в одной эрбрановской интерпретации для формулы φ ,
 - 2. Если формула φ выполнима хотя бы в одной эрбрановской интерпретации для формулы φ , то формула φ выполнима.
 - 3. Если формула φ выполнима в каждой эрбрановской интерпретации для формулы φ , то формула φ общезначима.
 - 4. Если формула φ не имеет эрбрановских моделей, то формула φ не имеет никаких моделей.
 - 5. Все приведенные выше утверждения верны.
- **Задача 12.** Какие из продолжений следующего утверждения будут справедливы и почему ? «Первая подстановка, которая будет вычислена программой $\mathcal P$ в качестве ответа на запрос G»
 - 1. «зависит только от стратегии обхода дерева SLD-вычислений программы $\mathcal P$ для запроса G».
 - 2. «зависит только от порядка расположения программных утверждений в программе \mathcal{P} ».
 - 3. «зависит только от порядка расположения подцелей в запросе G».
 - 4. «зависит только от порядка расположения атомов в теле процедур программы \mathcal{P} ».
 - 5. «зависит от всех перечисленных выше факторов».
 - 6. «не зависит ни от одного из перечисленных выше факторов».

Вариант 1

Задача 0. Слово — это конечный непустой список букв фиксированного конечного алфавита. Текст — это конечный непустой список слов. Построить логическую программу, которая для заданного текста L вычисляет два бесповторных списка X и Y. Список X состоит из всех тех слов текста L, которые встречаются в нем ровно один раз, а список Y — из всех остальных слов текста L. Запрос к программе должен иметь вид ? G(L, X, Y).

Задача 1. Используя константные, функциональные и предикатные символы алфавита (см. Приложение 1), построить замкнутую формулу логики предикатов, соответствующую следующему утверждению.

«Ни одна последовательность положительных действительных чисел не имеет ни одной отрицательной предельной точки»

Задача 2. Для заданной формулы φ выяснить, применяя метод семантических таблиц, является ли эта формула общезначимой.

$$\forall y(\exists y \neg P(y) \ \rightarrow \ \exists x R(x)) \rightarrow \forall x \exists y (P(f(x)) \vee R(y))$$

Задача 3. Для заданной формулы φ выяснить, применяя метод резолюций, является ли эта формула общезначимой.

$$\exists x \exists y (P(x,y) \rightarrow R(x)) \rightarrow \forall x (\neg \exists y P(x,y) \lor R(x))$$

Задача 4. Для заданного запроса G=? A(Y,X), $\mathbf{not}(A(X,Y))$ к заданной логической программе $\mathcal P$ построить на основе стандартной стратегии вычислений (с использованием операторов отсечения и отрицания) дерево SLD-резолютивных вычислений и определить множество вычисленных ответов. Примечание: заглавными буквами начинаются имена переменных и предикатов, а строчными буквами — имена констант и функций.

$$\begin{array}{ccccc} \mathcal{P}: & A(X,c) & \leftarrow & E(X), !, \mathbf{not}(B(X)); \\ & & A(X,Y) & \leftarrow & B(g(X)), E(Y); \\ & & B(g(c)) & \leftarrow & !; \\ & & B(X) & \leftarrow & B(g(X)); \\ & & E(b) & \leftarrow & ; \end{array}$$

Задача 5. Сформулируйте теорему о равносильной замене формул логики предикатов. Являются ли формулы логики предикатов P(x) и P(y) равносильными? Ответ обосновать.

Задача 6. Какая формула логики предикатов называется выполнимой? Приведите пример выполнимой формулы логики предикатов, которая невыполнима ни в одной интерпретации, предметная область которой состоит только из одного элемента.

Задача 7. Верно ли, что если запрос G(x) к хорновской логической программе имеет хотя бы одио успешное вычисление, то этот запрос имеет хотя бы один основной правильный ответ? Ответ обосновать.

Задача 8. Что называется стратегией вычисления логических программ? Зависит ли ответ на запрос G = ? **not**(P(x)) от того, какая именно стратегия вычисления применяется?

Задача 9. Известно, что некоторая модель для формулы φ не является моделью для формулы ψ . Какие из приведенных ниже утверждений всегда верны для любых замкнутых формул φ и ψ ?

- 1. Не существует успешного табличного вывода из таблицы $T' = \langle \{\psi\}, \{\varphi\} \rangle$, потому что...
- 2. Не существует успешного табличного вывода из таблицы $T = \langle \{\varphi\}, \{\psi\} \rangle$, потому что...
- 3. Формула φ является логическим следствием формулы ψ , потому что...
- 4. Формула ψ является логическим следствием формулы φ , потому что...
- 5. Все приведенные выше утверждения в общем случае неверны, потому что...

Задача 10. Пусть задано некоторое непустое множество дизъюнктов S_0 . Пусть S_1 — это множество всех формул, резолютивно выводимых из множества дизъюнктов S_0 . Какие из приведенных ниже утверждений всегда справедливы и почему?

- 1. Если каждый дизъюнкт множества S_0 выполним, то и каждый дизъюнкт множества S_1 выполним, потому что....
- 2. Если каждый дизъюнкт множества S_1 выполним, то множество дизъюнктов S_0 имеет модель, потому что....
- 3. Если множество дизъюнктов S_0 имеет модель, то множество дизъюнктов S_1 имеет модель, потому что....
- 4. Все приведенные выше утверждения всегда верны, потому что...

Задача 11. Пусть \mathcal{P} — это хорновская логическая программа, а S — множество всех дизъюнктов, соответствующих программным утверждениям программы \mathcal{P} . Известно, что для наименьшей эрбрановской модели $\mathbf{M}_{\mathcal{P}}$ программы \mathcal{P} выполняется соотношение $\mathbf{M}_{\mathcal{P}} = \emptyset$. Какие из приведенных ниже утверждений будут при этом всегда верны и почему?

- 1. Система дизъюнктов S выполняется в каждой эрбрановской интерпретации, потому что...
- 2. Из системы дизъюнктов S нельзя вывести ни одной резольвенты, потому что...
- 3. Система дизъюнктов S является противоречивой, потому что...
- 4. В каждом дизъюнкте из системе S есть хотя бы один атом со связкой отрицания \neg , потому что...
- 5. Все приведенные выше утверждения всегда неверны, потому что...

Задача 12. Какие из приведенных ниже утверждений справедливы и почему?

- 1. Любая арифметическая функция, вычислимая на машине Тьюринга, может быть вычислена подходящей хорновской логической программы с использованием стандартной стратегии вычисления, потому что...
- 2. Любая арифметическая функция, вычислимая на машине Тьюринга, может быть вычислена подходящей логической программой, но лишь с использованием нестандартной стратегии вычисления, потому что...
- 3. Любая арифметическая функция, вычислимая на машине Тьюринга, может быть вычислена подходящей логической программы с использованием стандартной стратегии вычисления, но лишь при добавлении операторов is и **not**, потому что...
- 4. Существуют арифметическая функция, вычислимая на машине Тьюринга, для вычисления которой нет логической программы даже в случае использования операторов **is** и **not**, потому что...