Основы математической логики и логического программирования

В.А. Захаров

Билет 2.

Хорновские логические программы: синтаксис. Декларативная семантика логических программ. Операционная семантика логических программ. Стратегии вычисления логических программ.

Синтаксис логических программ

Пусть $\sigma = \langle \mathit{Const}, \mathit{Func}, \mathit{Pred} \rangle$ — некоторая сигнатура, в которой определяются термы и атомы.

```
«заголовок» ::= «атом»

«тело» ::= «атом» | «тело», «атом»

«правило» ::= «заголовок» ← «тело»;

«факт» ::= «заголовок»;

«утверждение» ::= «правило» | «факт»

«программа» ::= «пусто» | «утверждение» «программа»

«запрос» ::= □ | ? «тело»
```

Терминология

Пусть $G = ?C_1, C_2, \dots, C_m$ — запрос. Тогда

- ightharpoonup атомы C_1, C_2, \ldots, C_m называются подцелями запроса G,
- lacktriangledown переменные множества $igcup_{i=1}^m Var_{C_i}$ называются целевыми переменными ,
- ▶ запрос □ называется пустым запросом ,
- запросы будем также называть целевыми утверждениями .

Для удобства обозначения условимся в дальнейшем факты A; рассматривать как правила $A \leftarrow$; с заголовком A и пустым телом.

Как нужно понимать логические программы?

Главная особенность логического программирования — полисемантичность: одна и та же логическая программа имеет две равноправные семантики, два смысла.

Человек-программист и компьютер-вычислитель имеют две разные точки зрения на программу.

Программисту важно понимать, ЧТО вычисляет программа. Такое понимание программы называется декларативной семантикой программы.

Компьютеру важно «знать», **КАК** проводить вычисление программы. Такое понимание программы называется операционной семантикой программы.

Как нужно понимать логические программы?

Декларативная семантика	Операционная семантика
Правило $A_0 \leftarrow A_1, A_2, \ldots, A_n$;	
Если выполнены условия	Чтобы решить задачу A_0 ,
A_1,A_2,\ldots,A_n , то справедли-	достаточно решить задачи
во и утверждение A_0 .	A_1, A_2, \ldots, A_n .
Факт А ₀ ;	
Утверждение A_0 считается	Задача A_0 объявляется ре-
верным.	шенной.
Запрос $?C_1, C_2, \ldots, C_m$	
При каких значениях целевых	Решить список задач
переменных будут верны все	C_1, C_2, \ldots, C_m
отношения $C_1, C_2,, C_m$?	

Более строгое описание семантик требует привлечения аппарата математической логики.

Логические программы и логические формулы

Каждому утверждению логической программы сопоставим логическую формулу:

Правило:
$$D' = A_0 \leftarrow A_1, A_2, \dots, A_n$$

$$D'=orall X_1\ldots orall X_k (A_1\&A_2\&\ldots\&A_n o A_0),$$
 где $\{X_1,\ldots,X_k\}=igcup_{i=0} \mathit{Var}_{A_i}$

Факт:
$$D'' = A$$

$$D'' = \forall X_1 \dots \forall X_k A$$
, где $\{X_1, \dots, X_k\} = Var_A$

Запрос:
$$G = ? C_1, C_2, \dots, C_m$$

$$G=C_1\&C_2\&\dots\&C_{m_{\text{const}}}\&\text{const}$$

С точки зрения декларативной семантики,

- ightharpoonup программные утверждения D и запросы G это логические формулы,
- ightharpoonup программа ${\cal P}$ это множество формул (база знаний),
- а правильный ответ на запрос это такие значения переменных (подстановка), при которой запрос оказывается логическим следствием базы знаний.

Определение (правильного ответа)

Пусть \mathcal{P} — логическая программа, G — запрос к \mathcal{P} с множеством целевых переменных Y_1,\ldots,Y_k .

Тогда всякая подстановка $\theta = \{Y_1/t_1, \dots, Y_k/t_k\}$ называется ответом на запрос G к программе \mathcal{P} .

Ответ $\theta = \{Y_1/t_1, \dots, Y_k/t_k\}$ называется правильным ответом на запрос G к программе \mathcal{P} , если

$$\mathcal{P} \models \forall Z_1 \ldots \forall Z_N G \theta, \qquad$$
где $\{Z_1, \ldots, Z_N\} = \bigcup_{i=1}^k \mathit{Var}_{t_i}.$

Теорема (об основном правильном ответе)

Пусть $G=?C_1,C_2,\ldots,C_m$ — запрос к хорновской логической программе $\mathcal{P}.$ Пусть Y_1,\ldots,Y_k — целевые переменные, t_1,\ldots,t_k — основные термы. Тогда подстановка $\theta=\{Y_1/t_1,\ldots,Y_k/t_k\}$ является правильным ответом на запрос G к программе \mathcal{P} тогда и только тогда, когда $\mathcal{P}\models (C_1\&\ldots\&C_m)\theta.$

ОПЕРАЦИОННАЯ СЕМАНТИКА ЛОГИЧЕСКИХ ПРОГРАММ

Концепция операционной семантики

Под операционной семантикой понимают правила построения вычислений программы. Операционная семантика описывает, КАК достигается результат работы программы.

Результат работы логической программы — это **правильный ответ** на запрос к программе. Значит, операционная семантика должна описывать метод вычисления правильных ответов.

Запрос к логической программе порождает задачу о логическом следствии. Значит, вычисление ответа на запрос должно приводить к решению этой задачи.

Таким методом вычисления может быть разновидность метода резолюций, учитывающая особенности устройства программных утверждений

Определение (SLD-резолюции)

Пусть

- ▶ G = ? $C_1, ..., C_i, ..., C_m$ целевое утверждение, в котором выделена подцель C_i ,
- ▶ $D' = A'_0 \leftarrow A'_1, A'_2, \dots, A'_n$ вариант некоторого программного утверждения, в котором $Var_G \cap Var_{D'} = \emptyset$,
- ▶ $\theta \in HOY(C_i, A'_0)$ наиб. общ. унификатор подцели C_i и заголовка программного утверждения A_0 .

Тогда запрос

$$G' = ?(C_1, \ldots, C_{i-1}, \mathbf{A}'_1, \mathbf{A}'_2, \ldots, \mathbf{A}'_n, C_{i+1}, \ldots, C_m)\theta$$

называется SLD-резольвентой программного утверждения D' и запроса G с выделенной подцелью C_i и унификатором θ .

Определение (SLD-резолютивного вычисления)

Пусть

- ▶ $G_0 = ?$ $C_1, C_2, ..., C_m$ целевое утверждение,
- ▶ $P = \{D_1, D_2, ..., D_N\}$ хорновская логическая программа.

Тогда (частичным) SLD-резолютивным вычислением , порожденным запросом G_0 к логической программе $\mathcal P$ называется последовательность троек (конечная или бесконечная)

$$(D_{j_1}, \theta_1, G_1), (D_{j_2}, \theta_2, G_2), \dots, (D_{j_n}, \theta_n, G_n), \dots,$$

в которой для любого $i, i \ge 1$,

- ▶ $D_{j_i} \in \mathcal{P}$, $\theta_i \in Subst$, G_i целевое утверждение (запрос);
- ▶ запрос G_i является SLD-резольвентой программного утверждения D_{j_i} и запроса G_{i-1} с унификатором θ_i .

Определение (SLD-резолютивного вычисления)

Частичное SLD-резолютивное вычисление

$$comp = (D_{j_1}, \theta_1, G_1), (D_{j_2}, \theta_2, G_2), \dots, (D_{j_k}, \theta_n, G_n)$$

называется

- ▶ успешным вычислением (SLD-резолютивным опровержением), если $G_n = \square$;
- бесконечным вычислением, если comp это бесконечная последовательность;
- тупиковым вычислением, если comp это **конечная** последовательность, и при этом для запроса G_n невозможно построить ни одной SLD-резольвенты.

Определение (SLD-резолютивного вычисления)

Пусть

- ▶ $G_0 = ?$ C_1, C_2, \dots, C_m целевое утверждение с целевыми переменными Y_1, Y_2, \dots, Y_k ,
- $ightharpoonup {\cal P} = \{D_1, D_2, \dots, D_N\}$ хорновская логическая программа,
- ▶ $comp = (D_{j_1}, \theta_1, G_1), (D_{j_2}, \theta_2, G_2), \dots, (D_{j_n}, \theta_n, \square)$ успешное SLD-резолютивное вычисление, порожденное запросом G к программе \mathcal{P} .

Тогда подстановка $\theta=(\theta_1\theta_2\dots\theta_n)|_{Y_1,Y_2,\dots,Y_k},$ представляющая собой композицию всех вычисленных унификаторов $\theta_1,\;\theta_2,\dots,\theta_n,$ ограниченную целевыми переменными $Y_1,Y_2,\dots,Y_k,$

называется вычисленным ответом на запрос G_0 к программе $\mathcal{P}.$

Теперь у нас есть два типа ответов на запросы к логическим программам:

- правильные ответы, которые логически следуют из программы;
- вычисленные ответы, которые конструируются по ходу SLD-резолютивных вычислений.

Правильные ответы — это то, что мы хотим получить, обращаясь с вопросами к программе.

Вычисленные ответы — это то, что нам в действительности выдает компьютер (интерпретатор программы).

Какова связь между правильными и вычисленными ответами?

КОРРЕКТНОСТЬ ОПЕРАЦИОННОЙ СЕМАНТИКИ

Теорема (корректности операционной семантики относительно декларативной семантики)

Пусть

- ▶ $G_0 = ?$ C_1, C_2, \ldots, C_m целевое утверждение,
- $ightharpoonup {\cal P} = \{D_1, D_2, \dots, D_N\}$ хорновская логическая программа,
- lacktriangledown вычисленный ответ на запрос G_0 к программе \mathcal{P} .

Тогда θ — правильный ответ на запрос G_0 к программе \mathcal{P} .

ПОЛНОТА ОПЕРАЦИОННОЙ СЕМАНТИКИ

Теорема полноты (главная).

Пусть θ — правильный ответ на запрос ?G к хорновской логической программе \mathcal{P} .

Тогда существует такой вычисленный ответ η на запрос ?G к программе \mathcal{P} , что $\theta=\eta\rho$ для некоторой подстановки ρ .

ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙ

Определение.

Отображение R, которое сопоставляет каждому непустому запросу $G: ?C_1, C_2, \ldots, C_m$ одну из подцелей $C_i = R(G)$ в этом запросе, называется правилом выбора подцелей.

Для заданного правила выбора подцелей R вычисление запроса G к логической программе $\mathcal P$ называется R-вычислением, если на каждом шаге вычисления очередная подцель в запросе выбирается по правилу R.

Ответ, полученный в результате успешного R-вычисления, называется R-вычисленным.

Теорема сильной полноты

Каково бы ни было правило выбора подцелей R, если θ — правильный ответ на запрос G_0 к хорновской логической программе \mathcal{P} , то существует такой R-вычисленный ответ η , что равенство

ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХ ПРОГРАММ

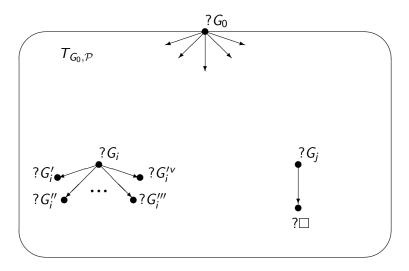
Определение

Деревом SLD-резолютивных вычислений запроса G_0 к логической программе $\mathcal P$ называется помеченное корневое дерево $T_{G_0,\mathcal P}$, удовлетворяющее следующим требованиям:

- 1. Корнем дерева является исходный запрос G_0 ;
- 2. Потомками каждой вершины G являются всевозможные SLD-резольвенты запроса G (при фиксированном стандартном правиле выбора подцелей);
- Листовыми вершинами являются пустые запросы (завершающие успешные вычисления) и запросы, не имеющие SLD-резольвент (завершающие тупиковые вычисления).

ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХ ПРОГРАММ

Иллюстрация



Определение

Стратегией вычисления запросов к логическим программам называется алгоритм построения (обхода) дерева SLD-резолютивных вычислений $T_{G_0,\mathcal{P}}$ всякого запроса G_0 к произвольной логической программе \mathcal{P}

Стратегия вычислений называется вычислительно полной, если для любого запроса G_0 и любой логической программы $\mathcal P$ эта стратегия строит (обнаруживает) все успешные вычисления запроса G_0 к программы $\mathcal P$

Фактически, стратегия вычисления — это одна стратегий обхода корневого дерева. Как известно, таких стратегий существует много, но среди них выделяются две наиболее характерные:

- **стратегия обхода в ширину**, при которой дерево строится (обходится) поярусно вершина i-го не строится, до тех пор пока не будут построены все вершины (i-1)-го яруса;
- стратегия обхода в глубину с возвратом, при которой ветви дерева обходятся поочередно — очередная ветвь дерева не обохдится, до тех пор пока не будут пройдены все вершины текущей ветви.

Стратегия обхода в ширину является вычислительно полной, поскольку

- каждый запрос имеет конечное число SLD-резольвент, и поэтому в каждом ярусе дерева SLD-резолютивных вычислений имеется конечное число вершин;
- каждое успешное вычисление завершается на некотором ярусе;
- и поэтому каждое успешное вычисление будет рано или поздно полностью построено.

Но строить интерпретатор логических программ на основе стратегии обхода в ширину нецелесообразно. При обходе дерева в ширину нужно обязательно хранить в памяти все вершины очередного яруса. Это требует большого расхода памяти. Например, в 100-м ярусе двоичного дерева содержится 2^{99} вершин. Вычислительных ресурсов всего земного шара не хватит, чтобы хранить информацию обо всех этих вершинах.

Стратегия обхода в глубину с возвратом основана на следующих принципах:

- 1. все программные утверждения упорядочиваются;
- 2. на каждом шаге обхода из текущей вершины G осуществляется переход
 - либо в новую вершину-потомок G', которая является SLD-резольвентой запроса G и первого по порядку программного утверждения D, ранее не использованного для этой цели;
 - либо в ранее построенную родительскую вершину G'' (откат), если все программные утверждения уже были опробованы для построения SLD-резольвент запроса G.

Стратегия обхода в глубину с возвратом

- имеет эффективную реализацию: в памяти нужно хранить лишь запросы той ветви, по которой идет обход, и каждый запрос должен вести учет использованных программных утверждений;
- является, к сожалению, вычислительно неполной.

Стратегия обхода в глубину чувствительна к порядку расположения программных утверждений в логических программах. Результат вычисления запроса может измениться при перестановке программных утверждений. Поскольку соображения эффективности превалируют над требованиями вычислительной полноты, в качестве стандартной стратегии вычисления логических программ выбрана стратегия обхода в глубину. Программист должен сам выбрать нужный порядок расположения программных утверждений, чтобы стандартная стратегия вычисления отыскала все вычисленные ответы.

КОНЕЦ ОТВЕТА НА БИЛЕТ 2.