
Formal Programming Language Semantics note 4 CS4/MSc/TPG 30.09.04

Formal Programming Language Semantics note 4

Semantics of IMP: the fine details

This note gives the complete set of semantic rules of the language IMP, and goes
into some of the finer points concerning this style of semantics.

Rules for arithmetic expressions

(1)

〈n, σ〉 ⇓ n

(2)

〈X, σ〉 ⇓ σ(X)

(3) 〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 - a1, σ〉 ⇓ n
n = n0 − n1

(4) Similar to (3) but for * .

Rules for boolean expressions

(5)

〈t, σ〉 ⇓ t

(6) 〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 <= a1, σ〉 ⇓ true
n0 ≤ n1

(7) 〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 <= a1, σ〉 ⇓ false
n0 > n1

(8) 〈b, σ〉 ⇓ t

〈not b, σ〉 ⇓ t′ t′ = ¬t

(9) 〈b0, σ〉 ⇓ false
〈b0 and b1〉 ⇓ false

(10) 〈b0, σ〉 ⇓ true 〈b1, σ〉 ⇓ t

〈b0 and b1〉 ⇓ t

1



Formal Programming Language Semantics note 4 CS4/MSc/TPG 30.09.04

Rules for commands In rule (12) below we need a little bit of extra notation
involving states. If σ ∈ S, X ∈ I and n ∈ Z, we write σ[X 7→ n] (informally “σ with
X updated to n”) for the state σ′ defined by

σ′(Y ) =

{
n if Y = X,
σ(Y ) otherwise.

(11)

〈skip , σ〉 ⇓ σ

(12) 〈a, σ〉 ⇓ n

〈X := a, σ〉 ⇓ σ′ σ′ = σ[X 7→ n]

(13) 〈c0, σ〉 ⇓ σ′ 〈c1, σ
′〉 ⇓ σ′′

〈c0 ; c1, σ〉 ⇓ σ′′

(14) 〈b, σ〉 ⇓ true 〈c0, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′

(15) 〈b, σ〉 ⇓ false 〈c1, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′

(16) 〈b, σ〉 ⇓ false
〈while b do c, σ〉 ⇓ σ

(17) 〈b, σ〉 ⇓ true 〈c, σ〉 ⇓ σ′ 〈while b do c, σ′〉 ⇓ σ′′

〈while b do c, σ〉 ⇓ σ′′

We now discuss some aspects of this style of definition in more detail, making
a few points somewhat more precise.

Rules vs. rule instances Let us use the term evaluation statement for a for-
mula 〈P, σ〉 ⇓ R (whether derivable or not), where P is a particular program
phrase, σ is a particular state and R is a particular result of the appropriate
type. A derivation tree thus consists of evaluation statements related by rule
instances. Clearly, we may identify the set of all possible evaluation statements
with the set

V = (Aexp × S× Z) t (Bexp × S× T) t (Com × S× S).

Strictly speaking, the formulae occurring in the rules are not themselves eval-
uation statements, since they contain metavariables such as a, b, c, X, n, σ which
range over various kinds of entities. Rather, they are patterns or “templates”
which give rise to an infinite number of evaluation statements as particular in-
stances. Thus, the rules themselves are really templates giving rise to an infinite
set of rule instances, and it is these rule instances that occur in derivations. To

2



Formal Programming Language Semantics note 4 CS4/MSc/TPG 30.09.04

instantiate a rule, we must assign to each metavariable occurring in the rule
an entity of the appropriate kind, in such a way that any side-conditions of the
rule are satisfied. We must then replace each metavariable occurrence by the
corresponding entity; Note that for each metavariable, all occurrences must be
replaced by the same entity, whether they appear in the premises or conclusion
of the rule.

We will write I for the set of rule instances obtained in this way from the rules
of IMP.

Inductive definitions via rules Now that we have made precise the way in
which a bunch of rules gives rise to a set of rule instances, let us be a little more
explicit about how this gives rise to an evaluation relation. Recall that we are
trying to define a subset E of the set V defined above. One possible definition of
E is as follows:

E = {(P, σ, R) | There’s a derivation of 〈P, σ〉 ⇓ R by means of rule instances in I}

To make this absolutely rigorous, one would have to provide some precise defi-
nition of a derivation as a mathematical object (easy but boring). However, there
is another way of formulating the definition of E which is mathematically more
appealing. It is worth making some effort to understand this, as it is an example
of an inductive definition of a kind which arises very frequently in mathematics
and computer science, especially language theory.

Let us say a subset F ⊆ V is closed under I if whenever

φ1 · · · φk

φ

is a rule instance in I and φ1, . . . , φk ∈ F , we also have φ ∈ F . Clearly our set E
should be closed under I, since if φ1, . . . , φk are all derivable and the above rule
instance is in I, then φ is also derivable. However, we also want to say that E
doesn’t contain any other evaluation statements beyond those that are entailed
by the rules — in other words, E contains nothing more than is implied by saying
it is closed under I. We can make this precise as follows:

Let E be the intersection of all subsets F ⊆ V that are closed under I.
In symbols: E =

⋂
{F ⊆ V | F closed under I}.

Exercise: Show that E (defined in this way) is itself closed under I, and is there-
fore the smallest subset of V that is closed under I. Check that this definition of
E agrees with the definition via derivations.

Whichever definition we adopt, it is clear that we can prove properties of the
evaluation relation by induction. Specifically, to show that some property holds
for all instances 〈P, σ〉 ⇓ R of the evaluation relation, it is enough to show that
this property is preserved by all the semantic rules.

3



Formal Programming Language Semantics note 4 CS4/MSc/TPG 30.09.04

Proving facts about programs It is possible in principle (though hard in prac-
tice!) to prove program correctness results directly from the operational defini-
tion of the language. For example, let P be the IMP program

while 1<=X do (Y:=Y*X ; X:=X-1)

which we considered at the end of Note 3. You might like to try to prove the
following fact directly from the operational semantics:

If σ(X) = m and σ(Y) = 1, then 〈P, σ〉 ⇓ σ′ where σ′(X) = 0 and σ′(Y) = m!.

This way of proving properties of programs is not recommended in general — as
we shall see, the use of an axiomatic semantics is usually more convenient.

As well as properties of particular programs, we can also prove interesting
facts about the language. For instance, in the case of IMP, one can prove the
following important facts as theorems:

• For all a, σ there is a unique n such that 〈a, σ〉 ⇓ n.

• For all b, σ there is a unique t such that 〈b, σ〉 ⇓ t.

• For all c, σ there is at most one σ′ such that 〈c, σ〉 ⇓ σ′.

[Exercise: satisfy yourself that you know how to prove these.] These facts tell
us that the run-time behaviour of IMP is deterministic and completely specified
by the rules we have given. In general, we say an evaluation relation is deter-
ministic (or sometimes monogenic) if for every P, σ there is at most one R such
that 〈P, σ〉 ⇓ R. Usually we will want our evaluation relation to be determinis-
tic. However, we might sometimes want to consider non-deterministic relations,
either because of some kind of run-time non-determinism in the language, or
because we want to leave certain aspects of program behaviour unspecified in
the language definition.

Aside: Big-step vs. small-step relations. The kind of relation we have been
considering here is sometimes called a big-step evaluation relation, since it cap-
tures the idea of evaluating or executing a piece of code all the way to its final
result. This contrasts with small-step evaluation relations, which typically cap-
ture the idea of a single “computation step”. A small-step relation might have
the form

〈P, σ〉 → 〈P ′, σ′〉
and we can then obtain a complete computation by chaining together instances
of this relation until we reach something that cannot be evaluated any further.
A structural operational semantics may be given in either a big-step or a small-
step style; big-step presentations tend to involve fewer arbitrary choices, while
small-step presentations are easier to implement on a machine.

John Longley

4


