

KLOCwork
MSC to SDL Synthesizer

Reference Manual
Release 2.0

 Printed on 9 April, 2002

Copyright © 2001-2002 KLOCwork Solutions Corporation
All rights reserved

This document, as well as the software described in it, is furnished under license and may only be used or
copied in accordance with the terms of such license. The information contained herein is the property of
KLOCwork Solutions Corporation and is confidential between KLOCwork Solutions Corporation and the
client and remains the exclusive property of KLOCwork Solutions Corporation. No part of this
documentation may be copied, translated, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission
of KLOCwork Solutions Corporation.

If you find any problems in the documentation, please report them to us in writing. KLOCwork Solutions
Corporation does not warrant that this document is error-free.

KLOCwork MSC to SDL Synthesizer™ is a trademark of KLOCwork Solutions Corporation. Telelogic
Tau is a trademark of Telelogic AB.

Microsoft®, Microsoft Word, Microsoft Office, Windows®, Windows 98™, Windows NT® and MS-
DOS™ are trademarks of the Microsoft Corporation. Adobe®, Adobe Acrobat, Acrobat Exchange,
Acrobat Reader, and PostScript are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. Ghostscript is a registered trademark of artofcode
LLC and Artifex Software.

KLOCwork Corporation
Toll-free telephone: 1-866-556-2967

E-mail:
sales@klocwork.com

support@klocwork.com
Website: http://www.klocwork.com

Corporate Headquarters:
1 Antares Drive, Suite 510

Ottawa, Ontario
Canada

K2E 8C4
(613) 224-2277

US Headquarters:
1700 Montgomery Street

Suite 111
San Francisco, CA

94111
(415) 954-7154

 i

Contents

Introduction 5
What is the KLOCwork MSC to SDL Synthesizer?...6
Bridging scenarios and state machine models ..7
KLOCwork Bridge family of products ...8
MSC to SDL Synthesizer..9
MSC to SDL Synthesizer in the development process ...9

Use MSCs to jumpstart your SDL project ...10
Use MSCs to rapidly prototype requirements..10
Use MSCs to perform automatic early fault detection...11
Use MSCs to automatically generate test cases...11
Use MSCs for architecture definition and validation ..12
Use MSCs to design components ..12
Use KLOCwork MSC to SDL Synthesizer for SDL training..12

MSC and SDL notations 13
Terms and concepts ..13
Message Sequence Charts (MSC)...14
Specification and Description Language (SDL) ...16

Elements of SDL structural diagrams..16
Elements of SDL communication..17
Elements of SDL state machines ...18

Installing MSC to SDL Synthesizer 21
Installing MSC to SDL Synthesizer on a Sun Solaris or HP-UX workstation..21
Installing MSC to SDL Synthesizer on a PC running Microsoft Windows 98 or Windows NT22

Running the KLOCwork MSC to SDL Synthesizer 23
Ways to run the KLOCwork MSC to SDL Synthesizer ...23
Running MSC to SDL Synthesizer from Telelogic Tau ...24

Synthesizer integration with Telelogic Tau ...24
Starting up ...24
Selecting MSCs for synthesis ..25
Menus ..25
Simulating MSCs...27
Configuration file ..30

ii Contents

Running from the GUI for Windows 98/NT...33
Running the KLOCwork MSC to SDL Synthesizer from the command line ...36

Synthesis: Basic MSC scenarios 39
Introduction ..39
Diagram ..40
Instance...42
Message ..44
Timer ..49
Action ...53
Instance creation ...55
Instance stop ...58

Synthesis: Coregions 61

Synthesis: Compositions of multiple MSCs 63
Specifying more complex behavior ..63
Implicit composition...64
Composition using HMSCs ..65
Composition using conditions ..71

Initial conditions..74
What conditions are considered global? ..75

 Contents iii

Synthesis: End of instance handling 77

Synthesis: Non-determinism considerations 79

Synthesis: Slices of MSCs 81

Synthesis: Data manipulations in MSCs 83
Introduction ..83
Automatic data declarations..84
Explicit data declarations..86
Explicit local decisions based on data ..88
Implicit local decisions based on data ..90

Example of an MSC specification: A simple network 93
Description of the simple network..93
MSC specification ..94

MSC PR syntax 99
Input language ..99
Keywords..100
Lexical rules..101
Syntax rules ..102

Error messages 107
Error message list ...108

Known limitations 115
Unsupported MSC constructs ...115
Coregions..115
Telelogic Tau integration module...115

Troubleshooting 117

Glossary of Terms 119

Index 121

 5

C H A P T E R 1

Introduction

In This Chapter
What is the KLOCwork MSC to SDL Synthesizer?6
Bridging scenarios and state machine models....................7
KLOCwork Bridge family of products8
MSC to SDL Synthesizer ...9
MSC to SDL Synthesizer in the development process9

6 KLOCwork MSC to SDL Synthesizer Reference Manual

What is the KLOCwork MSC to SDL
Synthesizer?

The KLOCwork MSC to SDL Synthesizer, a member of the KLOCwork
Bridge family of products, takes a set of Message Sequence Charts (MSC)
that comprise a scenario model and automatically transforms the scenario
model into an executable state machine model in Specification and
Description Language (SDL) that conforms to standards and is ready to use
with SDL tools such as Telelogic Tau.

This document contains information that we hope will assist you in day-to-
day use of KLOCwork MSC to SDL Synthesizer. This document contains the
following parts:

� MSC and SDL notations (on page 13) provides an overview of the input
and output languages of the KLOCwork MSC to SDL Synthesizer.

� Installing MSC to SDL Synthesizer on page 21 explains how to install
the KLOCwork MSC to SDL Synthesizer.

� Running the KLOCwork MSC to SDL Synthesizer (on page 23)
describes how to use the Synthesizer integrated with Telelogic Tau or
standalone.

� Synthesis sections (see "Synthesis: Basic MSC scenarios" on page 39)
describe the graphical representation of the MSC language, describe how
the KLOCwork MSC to SDL Synthesizer interprets input MSCs, and
describe what SDL constructs are produced.

� MSC PR syntax (on page 99) defines the textual syntax of the subset of
MSC language supported by the KLOCwork MSC to SDL Synthesizer.

� Error messages (MSC to SDL) (see "Error messages" on page 107) lists
error messages associated with KLOCwork MSC to SDL Synthesizer.

To learn more about the concepts and operations related to the Synthesizer,
refer to KLOCwork MSC to SDL Synthesizer Tutorial. For more examples of
MSC specifications, see the KLOCwork MSC to SDL Synthesizer Cookbook
of MSC Specifications.

 Chapter 1 Introduction 7

Bridging scenarios and state machine
models

Today there exists a discontinuity between scenarios and state machines.
Bridging these two types of formal models by automatically synthesizing
executable state machines from scenarios allows rapid prototyping of
products using scenarios rather than state machines.

There are important advantages of moving beyond state machine modeling
towards scenario modeling. Scenarios are used at very early phases of the
development process when requirements for the future product are being
captured and analyzed. Scenarios are simple enough to be used in discussions
with various stakeholders of the development. Scenarios are flexible enough
to be easily modified and updated which is vital for lucid and creative
processes at early development phases.

On the other hand, state machines are currently the established starting point
for formal modeling. State machines are more expressive and powerful than
scenarios, but they require more effort to produce, understand, and maintain.

Automatic synthesis of state machines from scenarios moves the benefits of
formal, tool-supported modeling and validation to earlier phases of the
development process, thereby stopping the snowball of incorrect decisions
driven by incomplete or incorrect requirements. This helps get your product
to market faster while ensuring that you meet customer expectations.

8 KLOCwork MSC to SDL Synthesizer Reference Manual

KLOCwork Bridge family of products
The KLOCwork Bridge family of products provides a springboard for
developing software components using scenarios. These products focus on
the early phases of the software development process, particularly
requirements capture and validation, architecture definition and validation,
and system testing. The KLOCwork Bridge family of products allows use of
a scenario language during the modeling process and automatically
transforms scenarios into executable state machines.

The architecture of the KLOCwork Bridge product family consists of the
following components:

Scenario Analyzer performs syntax and semantic analysis of the input
scenario model.

Synthesizer creates an intermediate representation of the executable state
machine model in the form of Event Automata.

Code Generator takes the output of the Synthesizer and produces the
particular syntax of the language to which you want to bridge.

 Chapter 1 Introduction 9

MSC to SDL Synthesizer
The KLOCwork MSC to SDL Synthesizer takes a scenario model described
as a set of the ITU standard Message Sequence Charts (MSC) and
automatically transforms the scenario model into an executable state machine
model in the ITU standard Specification and Description Language (SDL).
The generated model is ready to use with SDL tools such as Telelogic Tau.

Here is a brief overview of how MSC constructs are mapped to SDL:

� Collection of multiple MSCs is mapped onto a single SDL system
� MSC instances are mapped onto SDL processes
� MSC message names are mapped onto SDL signals
� MSC message output events are mapped to signal outputs in an SDL

process
� MSC message input events are mapped to signal consumption stimuli in

an SDL state
� MSC timer set, reset, and timeout events are mapped to setting a timer,

explicit timer reset, and consumption of timer signal respectively
� instance stop is mapped to process termination

The KLOCwork MSC to SDL Synthesizer creates SDL models using two
types of code generators: the plain SDL generator and the type-based SDL
generator. The plain SDL generator creates the simplest form of SDL model.
The type-based SDL generator creates models using types, inheritance, and
virtual transitions packaged in a way that allows easy reuse. The type-based
SDL is meant for manual modifications and updates by using the language
capabilities of SDL without affecting the generated portion.

MSC to SDL Synthesizer in the
development process

The KLOCwork MSC to SDL Synthesizer is a versatile tool. The following
paragraphs illustrate how it can add value in the development process.

10 KLOCwork MSC to SDL Synthesizer Reference Manual

Use MSCs to jumpstart your SDL project
The KLOCwork MSC to SDL Synthesizer can be used to jumpstart your
SDL project. Start with few easy-to-understand scenarios, then simply click a
button and the Synthesizer automatically generates a complete SDL
specification ready to run in an SDL tool.

1 Start Telelogic Tau.

2 Use your Telelogic MSC Editor (MSCE) to create MSC diagrams.

3 Use the Telelogic HMSC Editor (HMSCE) to create High-level MSC
diagrams.

4 Run the KLOCwork MSC to SDL Synthesizer to produce an SDL model
that corresponds to your HMSC model.

5 Use your SDL tool to review and simulate the model.

6 Refine the MSC model.

7 Continue SDL project by refining the generated SDL model.

Use MSCs to rapidly prototype requirements
Jumping into coding too early and not understanding the requirements can
result in developing a product that does not meet customer expectations. By
using scenarios, you can describe functional requirements in an easily
understood format that can be discussed with non-technical stakeholders.

1 Use Telelogic MSC and HMSC Editors to capture functional
requirements as scenarios that focus on the interaction between your
system and its environment.

2 Simulate MSCs by using the KLOCwork MSC to SDL Synthesizer and
Telelogic Simulator UI.

3 When you notice problem areas, go back to your MSC tool, add more
scenarios to solve the problems. Rerun the Synthesizer to get the new
SDL specification.

4 Repeat this process until you are satisfied with your prototype (scenarios
and SDL model).

 Chapter 1 Introduction 11

Use MSCs to perform automatic early fault detection
Even when the goals of your project do not include building an SDL model,
the KLOCwork MSC to SDL Synthesizer can be used for early fault
detection in you MSC models. It can dramatically extend the value of your
MSC tools by adding the capability of automatic validation techniques, for
example, those provided by the Telelogic Tau Validator.

The automatically synthesized SDL model can be imported into an SDL tool
and analyzed using state-of-the-art state space exploration. The validation
process automatically discovers certain faulty behaviors such as deadlocks or
failed communication. These faulty behaviors are represented as scenarios
using the MSC tool. Anomalies in the behavior of the synthesized model
usually reflect problems or inconsistencies in the original MSC model.

1 Use your Telelogic MSC Editor (MSCE) to create MSC diagrams.

2 Use the Telelogic HMSC Editor (HMSCE) to create High-level MSC
diagrams.

3 Run the KLOCwork MSC to SDL Synthesizer to produce an SDL model
that corresponds to your HMSC model.

4 Use the Telelogic Tau Validator to automatically detect faults in the
scenario model.

5 Correct problems by creating additional scenarios.

6 Rerun the KLOCwork MSC to SDL Synthesizer.

Use MSCs to automatically generate test cases
The KLOCwork MSC to SDL Synthesizer can automatically produce test
cases as early as the requirements definition phase.

During scenario modeling, the black-box behavior of the system under
development is described by specifying desired interactions between the
system and its environment. Thus, the scenario model contains both the
description of the system and the description of the system's environment.

The KLOCwork MSC to SDL Synthesizer can selectively produce a partial
SDL model only for the environment part of the requirements definition. This
environment model can be used as a test suite for the subsequent integration
testing phase.

12 KLOCwork MSC to SDL Synthesizer Reference Manual

Use MSCs for architecture definition and validation
Automatic synthesis can help address the discontinuity between modeling
and implementation. By specifying system scenarios that describe
collaboration between architectural components and then synthesizing the
SDL architectural model, you can achieve the following benefits:

� early architecture validation by simulating system scenarios
� concurrent production of system scenarios for different components for

integration by the KLOCwork MSC to SDL Synthesizer

Use MSCs to design components
Once the components of the system have been identified and validated, you
can shift the viewpoint of scenario models and use scenarios to define
behavior of individual components. Using the powerful data extensions
supported by the KLOCwork MSC to SDL Synthesizer, you can use
scenarios as a design notation. This provides the following benefits:

� more intuitive designs
� improved collaboration between team members
� ongoing validation of designs by simulation of the synthesized models
� automatic code generation into the implementation language using SDL

Code generator

Use KLOCwork MSC to SDL Synthesizer for SDL training
SDL is a complex language. Most people find it easier to understand
scenarios than SDL. You can explain a scenario to a new employee then
import the scenario into the KLOCwork MSC to SDL Synthesizer to
automatically create the corresponding SDL model. Your new employee can
learn SDL faster by observing the automatically synthesized SDL for an
already familiar scenario.

 13

C H A P T E R 2

MSC and SDL notations

In This Chapter
Terms and concepts..13
Message Sequence Charts (MSC)14
Specification and Description Language (SDL)16

Terms and concepts
The input to the KLOCwork MSC to SDL Synthesizer is a composition of
multiple scenarios with data extensions. Each scenario describes behavior of
one or more actors. The composition of scenarios is described by the
composition graph or roadmap. Scenarios and their compositions are
described in the ITU standard Message Sequence Charts (MSC) language.

MSC is a trace language for the specification and description of the
communication behavior of system components and their environment by
means of message interchange. Communication behavior in MSCs is
presented in a very intuitive and transparent manner, particularly in the
graphical environment. Therefore, the MSC language is easy to learn, use,
and interpret.

Data extensions to MSC scenarios describe the flows of information through
scenarios.

The KLOCwork MSC to SDL Synthesizer automatically produces an
executable state machine model in ITU standard Specification and
Description Language (SDL) that implements the behavior described by the
input MSC model.

14 KLOCwork MSC to SDL Synthesizer Reference Manual

Message Sequence Charts (MSC)
This section provides a brief overview of the Message Sequence Charts
specification language. The MSC language supported by the KLOCwork
MSC to SDL Synthesizer is based on the MSC-2000 standard. However,
certain constructs of the MSC-2000 standard are not supported by the
Synthesizer. Data manipulations within MSC scenarios are handled with
certain minor deviations from the MSC-2000 standard.

The MSC language has a graphical notation. There are two kinds of MSC
diagrams: basic message sequence charts (bMSC), and high-level message
sequence charts (HMSC). A textual representation of MSC specifications is
also available. The Telelogic Tau Integration Module of the KLOCwork
MSC to SDL Synthesizer allows you to directly use the graphical MSC
diagrams from the Telelogic Tau MSC Editor. The input to the core
KLOCwork MSC to SDL Synthesizer is several MSCs in textual notation.
Telelogic Tau can perform the conversion between the graphical and the
textual notations of the MSCs.

The following figure shows a basic MSC. A basic MSC diagram describes
the behavior of several instances. Each instance is graphically represented as
a vertical line (called an instance axis). Each instance has an instance head
that contains the name of the instance. An instance axis corresponds to the
timeline of the instance. Instances exchange messages, which are shown as
arrows between two instances or between an instance and the frame of the
diagram. An instance can be created by another instance. A dashed arrow
pointing at the instance head of the child instance shows this parent-child
relationship.

Figure 1: Elements of a
basic Message Sequence
Chart

 Chapter 2 MSC and SDL notations 15

Message Sequence Charts can use timers. This figure shows how timer T is
started by instance c, and then expires, resulting in a timeout. An instance can
also stop a timer (not shown).

A basic MSC describes events for each instance. Events on each instance axis
are ordered. If the first event occurs higher on the instance axis than the
second one, the first event occurs before the second one. Related pairs of
message output and message input introduce another order: message output
occurs before the corresponding message input. Semantics of an MSC
specification is a (transitive) partial ordering of the events for all instances in
all basic MSC diagrams.

The total ordering of events along each instance in general may not be
appropriate. By means of a coregion, an exception to this can be made. A
coregion is introduced for the specification of unordered events on an
instance. Such a coregion in particular covers the practically important case
of two or more incoming messages in which the ordering of consumption
may be interchanged. For example, the order of consumption for messages y
and e on an instance c is not specified (see Elements of a basic Message
Sequence Chart diagram).

Composition of basic MSCs is represented graphically using high-level
message sequence chart (HMSC) diagrams. As shown in the following
figure, an HMSC diagram contains references to basic MSC diagrams and
flow lines.

Figure 2: Elements of a
High-level Message
Sequence Chart

Data-related elements of MSC specifications include:

� parameters of messages
� parameters of create events
� actions
� local decisions based on data

Composition of basic MSCs can be also described by global conditions.

16 KLOCwork MSC to SDL Synthesizer Reference Manual

Specification and Description
Language (SDL)

This section provides a brief overview of the Specification and Description
Language. The SDL language supported by the KLOCwork MSC to SDL
Synthesizer is based on the SDL-96 standard.

The SDL language has both graphical and textual notation. The Telelogic
Tau Integration Module of the KLOCwork MSC to SDL Synthesizer
represents the generated SDL directly in graphical notation in the Telelogic
Tau SDL Editor. The output of the core Synthesizer is SDL in textual
notation. Telelogic Tau creates both graphical and textual notations.

Elements of SDL structural diagrams
Let's consider a set of SDL diagrams that follow (Elements of SDL
communication).

Figure 3: Elements of
SDL structural diagrams

 Chapter 2 MSC and SDL notations 17

The top left diagram represents an SDL system with the name Example.
The system contains two SDL blocks (Bl1 and Bl2). An SDL channel with
the name C2 connects the blocks. There are also two other channels: channel
C1 connects the environment with block Bl1, and channel C3 connects
block Bl2 with the environment.

The top right diagram describes the internal structure of the SDL block Bl1.
Block Bl1 contains two SDL processes (with names Proc1 and Proc2).
Processes are connected by SDL signalroutes. Signalroute R1 connects the
environment of the block Bl1 to process Proc1. Signalroute R2 connects
process Proc1 to process Proc2. A dashed line from process Proc1 to process
Proc2 indicates that the process Proc1 can create instances of the process
Proc2. Signalroute R3 connects process Proc2 to the environment of the
block Bl1.

The bottom left diagram shows the behavior of the process Proc2. This
diagram describes a state machine for the process Proc2. The bottom right
diagram shows an SDL procedure, defined in process Proc2.

Elements of SDL communication
SDL communication is illustrated in the following figure, Elements of SDL
communication.

Figure 4: Elements of
SDL communication

18 KLOCwork MSC to SDL Synthesizer Reference Manual

SDL processes exchange signals. Each signal needs to be defined as a signal
definition. SDL signals can have parameters. Each channel and signal route
defines the list of signal names that can be transferred along this
communication path.

In the state machine description, there are symbols for signal output and
signal input. The signal input symbol is always attached to a certain state
symbol. When the input of a signal with parameters is defined, the
parameters of the signal are assigned to variables. SDL variables need to be
defined separately. A more detailed outline of SDL state machines is
provided in Elements of SDL state machines (on page 18).

Elements of SDL state machines
The following figure illustrates an SDL state machine. This state machine
contains a start symbol with an empty transition into the state
WaitOpenDoor. The state WaitOpenDoor has a single transition that is
initiated by the input of signal OpenDoor with a single parameter (assigned
to variable DoorAddr). The transition consists of three actions: output of the
signal Open, output of the signal DoorOpened, and timer start of the timer
DoorTimer. Timer DoorTimer is defined in the same diagram. The transition
enters the state Wait_DoorTimer.

The state Wait_DoorTimer describes how the timeout event from the timer
DoorTimer is handled. The transition is initiated by the input of the signal
from timer DoorTimer and consists of a single action – output of the signal
Close with a single parameter. The current value of the variable DoorAddr is
assigned to the signal parameter. The transition goes back to the state
WaitOpenDoor. All signals, except the signal from the timer DoorTimer, are
saved in state Wait_DoorTimer.

 Chapter 2 MSC and SDL notations 19

Figure 5: Elements of
SDL state machines

SDL state machines have the following semantics. Each SDL process has a
so-called input buffer. When an SDL process receives a signal, it is first
appended to the end of the input buffer. An SDL state machine consumes
signals from the beginning of the input buffer. When the current state
specifies the input of current signal, it is removed from the input buffer and
the state machine performs the corresponding transition. The signal can be
explicitly saved in the current state, in which case it remains in the input
buffer, and the state machine considers the next signal in the input buffer.
When all signals in the input buffer are considered, or when the state machine
has finished the current transition, signals in the input buffer are considered
again from the beginning of the input buffer. It is possible to save all signals,
except those that are explicitly consumed in the current state (the so-called
save * statement). When a certain signal is not explicitly consumed or saved,
it is consumed implicitly (which means it is deleted from the input buffer and
the state machine remains in the current state).

 21

C H A P T E R 3

Installing MSC to SDL Synthesizer

In This Chapter
Installing MSC to SDL Synthesizer on a Sun Solaris or HP-UX
workstation...21
Installing MSC to SDL Synthesizer on a PC running Microsoft Windows
98 or Windows NT...22

Installing MSC to SDL Synthesizer on
a Sun Solaris or HP-UX workstation

To install the KLOCwork MSC to SDL Synthesizer on a UNIX workstation,
follow the steps below.

1 Change your current directory to the solaris or hpux directory on the
CDROM, depending on your type of workstation.

2 Run the msc2sdl-install.sh script from the directory in your
bash shell.

3 The installation program prompts you to enter the path to the directory
where you want for the KLOCwork MSC to SDL Synthesizer installed.
Enter the path without a slash at the end, for example: /home/ucs ,
then press Enter.

Installation begins and all required files are copied to the specified directory.
When the installation is completed, follow the instructions for starting
KLOCwork MSC to SDL Synthesizer.

22 KLOCwork MSC to SDL Synthesizer Reference Manual

Installing MSC to SDL Synthesizer on
a PC running Microsoft Windows 98
or Windows NT

To install KLOCwork SC to SDL Synthesizer on your Windows PC, follow
the steps below.

1 Open the Windows directory on the KLOCwork MSC to SDL
Synthesizer CDROM.

2 Start setup.exe

3 Follow the instructions that appear on the screen.

 23

C H A P T E R 4

Running the KLOCwork MSC to SDL
Synthesizer

In This Chapter
Ways to run the KLOCwork MSC to SDL Synthesizer.....23
Running MSC to SDL Synthesizer from Telelogic Tau24
Running from the GUI for Windows 98/NT......................33
Running the KLOCwork MSC to SDL Synthesizer from the command
line..36

Ways to run the KLOCwork MSC to
SDL Synthesizer

There are three ways to run the KLOCwork MSC to SDL Synthesizer:

� through Telelogic Tau
� from the graphical user interface for Microsoft Windows 98 or Microsoft

Windows NT
� from the UNIX or Windows command line

All three methods are described in the sections that follow.

24 KLOCwork MSC to SDL Synthesizer Reference Manual

Running MSC to SDL Synthesizer
from Telelogic Tau

Synthesizer integration with Telelogic Tau
The integration module for KLOCwork MSC to SDL Synthesizer allows you
to run it directly from the Telelogic Tau Organizer, using the MSC to SDL
menu in the Organizer. The Telelogic Tau integration module provides
seamless integration of the KLOCwork MSC to SDL Synthesizer into
Telelogic Tau:

1 Use the Telelogic MSC Editor to create input scenario models in
graphical notation. They are automatically converted into MSC textual
notation.

2 Apply the KLOCwork MSC to SDL Synthesizer to the selected MSCs.
You can place multiple MSCs into an Organizer module. Select one of
the two code generators (plain SDL or type-based SDL).

� Errors and warnings from the MSC to SDL Synthesizer are shown in
Organizer Log. The Show Error button in Tau Organizer Log
automatically opens the MSC Editor at the corresponding symbol of
the input MSC model

� The synthesized SDL model is automatically converted into graphical
representation and imported into the Organizer.

� The synthesized SDL model can be edited using the Telelogic Tau
graphical SDL Editor.

� The SDL model is complete and ready to be analyzed, simulated and
validated by the corresponding Telelogic Tau tools.

� Input MSCs can be directly simulated instead of the synthesized SDL
by the Telelogic Tau SDL Simulator (see Simulating MSC see
"Simulating MSCs" on page 27).

� Synthesis can be controlled by setting some options in the
configuration file (see Configuration file on page 30).

Starting up
To use the KLOCwork MSC to SDL Synthesizer with Telelogic Tau, do the
following:

1 Start Telelogic Tau.

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 25

2 From the installation directory of KLOCwork MSC to SDL Synthesizer,
execute the KLOCwork Tau integration module by typing one of the
following commands:

UNIX:

> msc2sdl–addin.sh

Windows:

> msc2sdl–addin.bat

With KLOCwork MSC to SDL Synthesizer integrated into Telelogic Tau, a
new menu, MSC to SDL, appears in the Telelogic Tau Organizer. Use
Telelogic Tau to create MSC diagrams, run the Synthesizer to create an SDL
model, and continue working with the generated SDL model in Telelogic
Tau.

Installation of the KLOCwork MSC to SDL Synthesizer contains scripts
sdt.sh (UNIX) and sdt.bat (Windows). This script automatically starts
Telelogic Tau and attaches the KLOCwork Tau integration module. You can
edit these scripts to point to correct location of Telelogic Tau on your
machine.

Selecting MSCs for synthesis
There are two ways to select the input MSCs for SDL synthesis.

� select a single MSC or HMSC diagram in the Telelogic Tau Organizer,
� select a module in the Telelogic Tau Organizer. All MSCs from this

module are used as input to the KLOCwork MSC to SDL Synthesizer.

Menus
The MSC to SDL menu has the following items:

� Analyze only
Analyzes selected MSCs. Error and warning messages (if any) are
reported to the Organizer Log.

� Synthesize type-based SDL
Synthesizes a type-based SDL model from selected MSCs. In the case of
successful synthesis, SDL GR files are generated and imported into
Telelogic Tau. Error and warning messages (if any) are reported in the
Organizer Log.

26 KLOCwork MSC to SDL Synthesizer Reference Manual

� Synthesize plain SDL
Synthesizes a plain SDL model from selected MSCs. In the case of
successful synthesis, SDL GR files are generated and imported into
Telelogic Tau. Error and warning messages (if any) are reported in the
Organizer Log.

� Simulate MSC
Synthesizes a plain SDL model from selected MSCs. In the case of
successful synthesis, the synthesized SDL is imported into Telelogic Tau,
and analyzed by Telelogic Tau. An executable simulator model is
produced and executed using the Telelogic Tau SDL Simulator. The
executable model is simulated in terms of the input MSC model. Any
error and warning messages are reported in the Organizer Log.

� Help on the KLOCwork MSC to SDL Synthesizer
Opens an HTML browser and displays the KLOCwork MSC to SDL
Synthesizer Reference Manual.

Figure 6: MSC to SDL
Synthesizer integrated
with Telelogic Tau 4.2

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 27

Simulating MSCs
This section describes detailed steps for simulating MSC models using the
KLOCwork MSC to SDL Synthesizer and Telelogic Tau. The Tau
Integration Module of the KLOCwork MSC to SDL Synthesizer lets you
directly simulate the input MSC model instead of the generated SDL. You
will be able to

� single step through the MSC model
� guide the simulation of the MSC model
� send application-specific signals from the environment using

automatically generated buttons in the Telelogic Tau Simulator
� view the execution trace as symbols on the input MSC are highlighted

(Source MSC trace)
� view the execution trace as a new MSC trace generated by the Tau

Simulator (MSC trace)

To simulate the MSC models, perform the following steps:

1 Select one or more MSCs in the Telelogic Tau Organizer.

2 Click the Simulate MSC button. The Telelogic Tau Integration Module of
the KLOCwork MSC to SDL Synthesizer automatically performs the
following sequence of tasks:

a) Synthesizes plain SDL model from selected MSCs

b) if synthesis is successful, imports the synthesized SDL into
Telelogic Tau

c) analyzes the synthesized model using the SDL Analyzer of
Telelogic Tau

d) generates C code for the synthesized SDL model using the Tau
SDL Code generator

Note: This step requires that the Telelogic Tau Code generator be
installed.

e) calls the C compiler to produce the executable simulator
corresponding to the synthesized SDL model.

Note: This step requires a C compiler to be available.

f) automatically generates the button definitions for the Simulator
GUI. The generated buttons correspond to the signals that can be sent
from the environment of the synthesized SDL model.

28 KLOCwork MSC to SDL Synthesizer Reference Manual

g) if generation in steps c to f above is successful, starts the Simulator
GUI with the automatically generated buttons (see SDL Simulator
with application-specific buttons "Figure 8: SDL Simulator with
application specific buttons" on page 29)

If any problems are encountered, error and warning messages are
reported in the Telelogic Tau Organizer Log. In particular, errors and
warnings may be produced during the following steps:

� MSC to SDL Synthesizer (syntax and semantic errors in the input
MSC)

� SDL Analyzer (syntax and semantic errors in data operations)

� C environment errors (environment is incorrectly installed)

Figure 7: MSC to SDL
menu inTelelogic Tau
Organizer

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 29

Figure 8: SDL Simulator
with application specific
buttons

Once the Simulator is started, you can explore the behavior of the input MSC
model using the capabilities of the SDL Simulator:

� Use the Symbol button in the Execute group to single-step through your
MSC model. The right hand panel displays the textual trace of events
generated by the synthesized SDL model.

� Use the Source MSC button in the Trace group to highlight events
directly in the input MSC diagrams (as shown in the following figure). Figure 9: Showing trace

as source MSC in MSC
Editor of Telelogic

30 KLOCwork MSC to SDL Synthesizer Reference Manual

� Use the MSC button in the Trace group to see the events as the MSC
trace, generated by the SDL Simulator (as shown in the following figure).
Use the Trace pull-down menu to set the desired granularity of the
generated trace.

Figure 10: Showing MSC
trace generated by the
SDL Simulator

� Use other buttons in the Execute group to control the execution of the
model (refer to Telelogic Simulator manual).

� Use buttons in the application-specific group (for example, this group is
named Calculator in SDL Simulator with application specific buttons
"Figure 8: SDL Simulator with application specific buttons" on page 29)
to send specific signals from the environment of the model (refer to
Telelogic Simulator manual).

� From the Organizer File menu, chose Restart to restart simulation.

Configuration file
To set the options for the KLOCwork MSC to SDL Synthesizer when it is
integrated with Telelogic Tau, edit the configuration file msc2sdl.ini.

The Synthesizer searches for msc2sdl.ini file in the following sequence:

1 Telelogic Tau model directory

2 Current working directory (the one from which Telelogic Tau was
started)

3 Installation directory

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 31

The contents of the configuration file have the following syntax:

<file> ::= <assignment> *

<assignment> ::= <option> = <value>

Each <assignment> sentence should be written on a separate line. Command
options are listed below. For each option, the set of possible values is
provided.

Option Value Description
OPT_UPPERCASE yes, no Performs a case sensitivity

analysis of identifiers. By default
(=yes), all identifiers are
automatically transformed to
upper case.

OPT_ALL_WARNINGS yes, no Displays both critical and non-
critical warning messages. By
default (=no), only critical
messages are produced.

OPT_CROSS_REFS yes, on Generates references to the
source MSCs in the generated
SDL. They are generated as
comments and can be used by
Telelogic Tau to simulate MSCs
(see Simulating MSCs on page
27).

GENERATE_SYSTEM_NAME "<name>" Specifies the name of the
synthesized system. It is also the
prefix for some other identifiers
in the generated SDL files. The
default is
'SynthesizedModel'.

OPT_EXPAND_COREGIONS yes, no Generates permutations for active
events in coregions (see
Synthesis: Coregions on page 61
).

SLICE "<inst1>…<instn
>"

Selects a subset of instances to be
included into the generated SDL
system.

Includes <instance> to the slice
(see Slices "Synthesis: Slices of
MSCs" on page 81). Multiple
instances can be included into the
slice. When this option is not
used, then all instances are
included into the generated SDL
system.

32 KLOCwork MSC to SDL Synthesizer Reference Manual

Option Value Description
OPT_END_HANDLING state, stop, merge Sets the way of handling the

control flow end. Possible values
of type are: state (default), stop,
merge (see Control flow end
"Synthesis: End of instance
handling" on page 77).

OPT_CLEAN_GEN_PR yes, no Cleans generated phrase
representation (PR) files from the
temporary directory. By default
(value=no), all PR files are left in
the directory GEN_PR.

Note: Whitespace, empty lines and lines starting with "#" or ";" characters are
ignored.

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 33

Running from the GUI for Windows
98/NT

You can run the KLOCwork MSC to SDL Synthesizer in stand-alone mode
from a graphical user interface (GUI) for Microsoft Windows 98 or
Microsoft Windows NT.

Note: MSC textual representation (see MSC PR syntax on page 99) should
be used as the input to the Synthesizer in stand-alone mode.

To start the GUI, click on the MSC2SDL icon in the KLOCwork MSC to
SDL Synthesizer installation directory. You can create the shortcut for this
application.

The KLOCwork MSC to SDL Synthesizer GUI lets you select MSC PR files
in the multi-file selection dialog, which is started by pressing the Add button.
To remove MSC PR files from the list, select them and press the Remove
button.

34 KLOCwork MSC to SDL Synthesizer Reference Manual

The KLOCwork MSC to SDL Synthesizer GUI displays the panel with the
log.

Click the Show synthesized SDL PR radio button to view resulting SDL in
phrase representation.

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 35

The following check buttons define parameters of the synthesis algorithm
transferred to the KLOCwork MSC to SDL Synthesizer through the
command line. (Equivalent configuration file options are given in brackets.)

� Generate error messages in Telelogic Tau error format (OPT_SDTREF)
� Perform case-sensitive analysis of identifiers (OPT_UPPERCASE)
� Generate cross-references in the generated SDL (OPT_CROSS_REFS)
� Display both critical and non-critical warning messages

(OPT_ALL_WARNINGS)
� Generate permutations for active events in coregions (For more

information see, Synthesis: Coregions on page 61.)

In the Slice instances field, you can enter as list of slice instances (separated
by spaces). See Synthesis: Slices of MSCs (on page 81).

Press Synthesize plain SDL or Synthesize type-based SDL to start the
analysis. The synthesized SDL (in text format is placed in the file with the
name entered in the Output file name field.

36 KLOCwork MSC to SDL Synthesizer Reference Manual

Running the KLOCwork MSC to SDL
Synthesizer from the command line

You can run the KLOCwork MSC to SDL Synthesizer in stand-alone mode
from the UNIX or Windows command line.

Note: MSC textual representation (see MSC PR syntax on page 99) should be
used as the input to the Synthesizer in stand-alone mode.

Use one of the following programs to run the KLOCwork MSC to SDL
Synthesizer from the command line. These programs are located in the
KLOCwork MSC to SDL Synthesizer installation directory.

� tbsdl – synthesize type-based SDL
� plainsdl – synthesize plain SDL
� msc2sdl – synthesize plain or type-based SDL depending on command

line options

On Windows, these programs are batch files.

The command-line options for msc2sdl are described below. The programs
tbsdl and plainsdl use the same set of options except for the options –
t.

msc2sdl has a simple command-line interface. The input to the Synthesizer
is a set of text files in extended MSC-PR language (for more information, see
MSC PR syntax on page 99). The output of the KLOCwork MSC to SDL
Synthesizer is a simple text file containing the synthesized SDL model.

msc2sdl [options] <input-file>s ...

The following options are available:

-s <system-name>

--system <system-name>

Specify the name of the synthesized
system. It is also the prefix for some other
identifiers in the generated SDL files. The
default is SynthesizedModel.

-o <output-file>

--output <output-file>

Specify the output file for the generated
SDL specification. The default is
SynthesizedModel.sdl

 Chapter 4 Running the KLOCwork MSC to SDL Synthesizer 37

-t <codegen>

--codegen <codegen>

Specify the SDL code generator for the
msc2sdl program. The available code
generators are:

� plainsdl – for plain SDL;
� tbsdl – for type-based SDL.
� If this option is missing, no SDL is

generated but error and warning
messages are reported for the input
MSCs.

-r

--sdtref

Generate error messages (and cross-
references, if needed) compatible with the
Telelogic Tau format.

For the description of error messages see
Error messages 107

-c

--case

Perform a case sensitivity analysis of
identifiers. By default, all identifiers are
automatically transformed to upper case.

-x

--xref

Generate references to the source MSCs in
the generated SDL. They are generated as
comments and can be used by Telelogic
Tau to simulate MSCs (see Simulating
MSC see "Simulating MSCs" on page 27)

-w

--all-warn

Display both critical and non-critical
warning messages. By default only critical
messages are produced.

-S <instance>

--slice <instance>

Include <instance> to the slice (see Slices
"Synthesis: Slices of MSCs" on page 81).
Multiple –S options may be used to specify
a slice consisting of several instances. If no
–S options are given no slice is selected
(this is equivalent to a slice consisting of
all instances).

-p

--expand_coregions

Generate permutations for active events in
coregions (see Synthesis: Coregions on
page 61).

-e type

--end type

Set the way of handling the control flow
end. Possible values of type are: state
(default), stop, merge (see Control flow
end "Synthesis: End of instance handling"
on page 77).

<input-file> Specify a text file containing the
description of one or several diagrams in
extended MSC language (for description of
the textual representation of MSCs see
MSC PR syntax on page 99).

 39

C H A P T E R 5

Synthesis: Basic MSC scenarios

In This Chapter
Introduction..39
Diagram..40
Instance ..42
Message..44
Timer ..49
Action...53
Instance creation...55
Instance stop...58

Introduction
Synthesis is simplest when an input model consists of a single MSC without
conditions and coregions (basic MSC). Such an MSC defines the behavior of
the set of actors. A basic MSC diagram describes a (single) sequence of
events along the instance axis of each actor. More complex behavior of
actors, including alternative behaviors and repetitive behavior can be
described using compositions of basic MSCs (see Synthesis: Compositions
of multiple MSCs on page 63).

40 KLOCwork MSC to SDL Synthesizer Reference Manual

Diagram
A Message Sequence Chart (MSC) diagram describes the message flow
between instances. One MSC describes a partial behavior of a system.

<msc diagram> ::= <simple msc diagram> | <hmsc diagram>

<simple msc diagram> ::= <msc symbol> contains
 {<msc heading> <msc body area> }
<msc symbol> ::= <frame symbol>
 is attached to { <external message area> * } set
<frame symbol> ::=

<msc heading> ::= msc <msc name>
<msc body area> ::= { <instance layer>
 | <text layer>
 | <event layer>
 | <connector layer> } set
<event layer> ::= <event area> | < event area>
 above <event area>
<instance layer> ::= {<instance area> * } set
<text layer> ::= {<text area> * } set
<event area> ::= <instance event area>
 | <shared event area>
 | <create area>

<instance event area> ::= <message event area>
 | <timer area>
 | <concurrent area>
 | <action area>
<connector layer> ::= { <message area> *
 | <incomplete message area> * } set
<shared event area> ::= <condition area>

 Chapter 5 Synthesis: Basic MSC scenarios 41

An MSC diagram is mapped onto an SDL system containing a single SDL
block (see detailed illustration in the next section). Plain SDL mapping uses a
textual definition of the SDL system, which contains the textual definition of
the block. The generated SDL block, in turn, contains other textual
definitions, corresponding to MSC instances and data. These definitions
cannot be reused, except using the cut-and-paste approach. The type-based
SDL mapping produces an SDL package that contains a collection of the so-
called SDL structured types for the generated SDL block as well as for other
definitions. The generated SDL system uses the generated SDL package and
contains the type-based instance of the system, which simply uses the
corresponding generated block type from the package. This allows reuse of
the generated SDL definitions to, for example, instantiate them in a different
context.

42 KLOCwork MSC to SDL Synthesizer Reference Manual

Instance
An MSC is composed of interacting instances. An instance of an instance
kind has the properties of this kind. Within the instance heading the instance
kind name may be specified in addition to the instance name.

An Instance head symbol determines the start of a description of the instance
within an MSC. It does not describe the creation of the instance.
Correspondingly, the instance end symbol determines the end of a
description of the instance within an MSC. It does not describe the
termination of the instance. All instance fragments with the same name
constitute the same instance.

The instance definition provides an event description for message inputs and
message outputs, actions, shared and local conditions, timer events, instance
creation and instance stop. Within the instance body the ordering of events is
specified. Outside of coregions a total ordering of events is assumed. Within
coregions no ordering of events is assumed. For a detailed description of
coregions, see Synthesis: Coregions on page 61 .

<instance area> ::= <instance fragment area>
 [is followed by <instance body area>]
<instance fragment area> ::= <instance head area>
 is followed by <instance body area>
<instance head area> ::= <instance head symbol>
 is associated with <instance heading>
 [is attached to <createline symbol>]
<instance heading> ::= <instance name
 [:<instance kind>]
 [decomposed]
<instance head symbol> ::=

<instance name> ::= <name>
<instance kind> ::= [<kind denominator>] <kind name>
<kind denominator> ::= system | block | process
<kind name> ::= <name>
<instance body area>::= <instance axis symbol>
 is attached to { <event area> * } set
 is followed by { <instance end symbol> |
 <stop symbol> }
<instance axis symbol> ::=

<instance end symbol> ::=

 Chapter 5 Synthesis: Basic MSC scenarios 43

MSC instances are mapped onto SDL processes (plain SDL) or process types
(type-based SDL). Both mappings are illustrated below.

Figure 11: Plain SDL
MSC instance mapping
(SDL GR)

system SynthesizedModel 1(2)

block SynthesizedModel_block

P

R1

PING, CLOSE

Figure 12: Type-based
SDL MSC instance
mapping

44 KLOCwork MSC to SDL Synthesizer Reference Manual

Message
A message within an MSC is a relation between an output and an input. For
an MSC, the message output denotes the message sending, the message input
denotes the message consumption. No special construct is provided for
message reception (input into the buffer). The output may come from either
the environment or an instance, or be found; and an input is to either the
environment or an instance or is lost. An incomplete message is a message,
which is either an output (where the input is lost/unknown) or an input
(where the output is found/unknown).

A message exchanged between two instances can be split into two events: the
message input and the message output. In a message parameters may be
assigned.

The correspondence between message outputs and message inputs has to be
defined uniquely. In a graphical representation, a message is represented by
an arrow.

The loss of a message, for example a case in which a message is sent but not
consumed, is identified by a black hole in the graphical representation.
Symmetrically, a spontaneously found message (a message that appears from
nowhere) is defined by a white hole in the graphical representation.

<message event area> ::= { <message out area>
 | <message in area> }
<message out area> ::= <message out symbol>
 is attached to <instance axis symbol>
 is attached to <message symbol>
<message out symbol> ::= <void symbol>
<void symbol> ::= .
<message in area> in symbol> ::= <message
 is attached to <instance axis symbol>
 is attached to <message symbol>
<message in symbol> ::= <void symbol>
<message area> ::= <message symbol>
 is associated with <msg identification>
 is attached to {<message start area>
 |<message end area> }
<message start area> ::= <message out area>

<message end area> ::= <message in area>

<message symbol> ::=
 <incomplete message area> ::= { <lost message area>
 | <found message area> }

 Chapter 5 Synthesis: Basic MSC scenarios 45

<lost message area> ::= <lost message symbol>
 is associated with <msg identification>
 is associated with <instance name>] [
 is attached to <message start area>
<lost message symbol> ::=
<found message area> ::= <found message symbol>
 is associated with <msg identification>
 is associated with <instance name>] [
 is attached to <message end area>
<found message
symbol> ::=

<external message area> ::= { <external in message area>
 | <external out message area> }
 is attached to <msc symbol>
<external in message area> ::= <void symbol>
 is attached to { <message symbol>
 | <found message symbol> }
<external out message symbol> ::= <void symbol>
 is attached to { <message symbol>
 | <lost message symbol> }
<msg identification> ::= <message name>
 [,<message instance name>] [(<parameter list>)]
<parameter list> ::= <parameter name>[,<parameter list>]
<parameter name> ::= <name>
<message name> ::= <name>
<message instance name> ::= <name>

A simple message exchange without parameters is illustrated as follows:
Figure 13: Message
output

46 KLOCwork MSC to SDL Synthesizer Reference Manual

where m is the message name

Mapping of message output

A message output event without parameters is mapped to the following SDL
constructs in the sender SDL process.

Plain SDL

Phrase representation Graphical representation
...

output m via ch;

...
m via ch

signalroute
name

via ch

Type-based SDL

Phrase representation Graphical representation
...

output m via gt;

...

Mapping of message input

Message input event without parameters to the following SDL constructs in
the receiver SDL process (GR and PR representations are identical for plain
and type-based SDL):

Phrase representation Graphical representation
...

state st_x;

input m;

...

 Chapter 5 Synthesis: Basic MSC scenarios 47

Additionally, the corresponding SDL signal definition is generated according
to the rules described in Synthesis: Data manipulations in MSCs (on page
83) .

In MSC diagrams, instances with names env_0, environment and env
represent the environment of the system. That is,

� a message output to env_0, environment or env is interpreted as output to
the environment

� a message input from env_0, environment or env is treated similarly
� events on axis env_0, environment or env, other than message inputs and

outputs, are ignored

When the MSC slice is specified, instances other than those included in the
slice are also treated as the environment of the systems (see Synthesis: Slices
of MSCs (on page 81)).

The KLOCwork MSC to SDL Synthesizer assumes the following semantics
for lost and found messages:

� a lost message is interpreted as sent to the environment
� a found message is interpreted as received from the environment

The KLOCwork MSC to SDL Synthesizer handles MSC messages with
parameters. In SDL, the sender provides a signal parameter value. The
receiver stores this value to some variable. The KLOCwork MSC to SDL
Synthesizer lets you specify both the value and the variable in message
parameters on the MSC diagram.

The syntax of parameters is as follows:
Figure 14: Message with
parameters

48 KLOCwork MSC to SDL Synthesizer Reference Manual

<parameter list> ::= <parameter> {, <parameter> }*
<parameter> ::=
 <variable name>
 | <variable name> := <expr>
 | <expr> =: <variable name>
 | <constant>

<expr> is any text with balanced brackets. The KLOCwork MSC to SDL
Synthesizer does not treat quotes as string delimiters when parsing message
parameters.

 If a message parameter has the form x := e (where x is a variable and e is an
expression), then

� the sender evaluates e and passes it as the signal parameter
� receiver stores the received parameter value to variable x

Form e =: x is equivalent to x := e. If a parameter is just one variable name x,
it is equivalent to x := x (that is, the value of x is copied from the sender to
the receiver).

Semantics of messages with parameters are further illustrated in the
following figure. Data definitions are defined in Synthesis: Data
manipulations in MSCs (on page 83). Note that all variables are local to
actors, therefore, each actor has its own set of variables with different values.
Exchange of messages with parameters synchronizes the values of variable in
different actors.

Figure 15: Semantics of
messages with
parameters

 Chapter 5 Synthesis: Basic MSC scenarios 49

Timer
In MSCs, either the setting of a timer and a subsequent time-out due to timer
expiration or the setting of a timer and a subsequent timer stop may be
specified. In addition, the individual timer constructs – timer setting,
stop/time-out - may be used separately, for example in a case in which timer
expiration or time supervision is split between different MSCs. In the
graphical representation, the start symbol has an hourglass form connected to
the instance axis by a line symbol. A message arrow pointing at the instance,
which is attached to the hourglass symbol, describes time-out. The timer stop
symbol has the form of a cross that is connected with the instance by a line.

The specification of timer instance name and timer duration is optional.

Start denotes setting the timer and stop denotes canceling of the timer. Time-
out corresponds to the consumption of the timer signal.

<timer area>::= <timer start area>|<timer stop area>|<timeout area>
<timer start area> ::= <timer start symbol>
 is associated with <timer name>
 [<duration>]
 is attached to <instance axis symbol>
 [is attached to { <timer stop symbol2>
 | <timeout symbol3> }]
<timer start symbol> ::= <start symbol1> | <start symbol2>
<start symbol1> ::=

<start symbol2> ::=

<timer stop area> ::= <timer stop area1>
 | <timer stop area2>
<timer stop area1> ::= <timer stop symbol1>
 is associated with <timer name>
 is attached to <instance axis symbol>
<timer stop area2> ::= <timer stop symbol2>
 is associated with <timer name>
 is attached to <instance axis symbol>
 is attached to <timer start symbol>
<timer stop symbol1> ::=

<timer stop symbol2> ::=

<timeout area> ::= <timeout area1> | <timeout area2>

50 KLOCwork MSC to SDL Synthesizer Reference Manual

 <timeout area1> ::= <timeout sy
 is associated with <timer name>

mbol>

 is attached to <instance axis symbol>
<timeout symbol> ::= <timeout symbol1> | <timeout symbol2>
<timeout symbol1>
::=

<timeout symbol2>
::=

<timeout area2> ::= <timeout symbol3>
 [is associated with <timer name>]
 is attached to <instance axis symbol>
 is attached to <timer start symbol>
<duration name> ::= <expr>
<timer name> ::= <name>

An optional duration value in a timer set event is interpreted as a value of
time interval. Time is measured between the timer set event and the timer
reset or timeout event connected to it. Set, reset and timeout events might be
split or might be connected by a line.

The duration value may be an expression (in particular a constant).

For example, two timer events (illustrated in the following figures) are
equivalent.

Figure 16: Timer
duration can be a
constant

 Chapter 5 Synthesis: Basic MSC scenarios 51

Figure 17: Timer
duration can be an
expression

The timer start, stop and timeout events are mapped to SDL as follows:

Timer start event (shown below) is mapped to the same representation for
plain and type-based SDL (see the figures that follow).

Mapping of timer start event (Plain or type-based SDL)

Phrase representation Graphical representation
...

set (NOW + (value),T);

...
(NOW+(value),T) set

Timer stop event is mapped to the same construct in plain and type-based
SDL (as shown in the following figures).

Figure 18: Timer stop
event

52 KLOCwork MSC to SDL Synthesizer Reference Manual

Mapping of timer stop event (Plain or type-based SDL)

Phrase representation Graphical representation
...

reset(T);

...

Timeout event is mapped to the message input where the name of which is
the same as the timer name for both plain and type-based SDL (as shown in
the following figures).

Figure 19: Timeout event

 T

Mapping of timeout event (Plain or type-based SDL)

Phrase representation Graphical representation
…

state st_x;

input T;

…
T

timer name

st_x

 Chapter 5 Synthesis: Basic MSC scenarios 53

Action
In addition to message exchange, the actions may be specified in MSCs. An
action is an atomic event that has formal data statements associated with it.

<action area> ::= <action symbol>
 is attached to <instance axis symbol>
 contains <action statement>
<action symbol> ::=

<action statement> ::= <text>

Any valid SDL statement may be specified in an action statement. This
action statement is not analyzed by the KLOCwork MSC to SDL Synthesizer
and is transferred directly to the generated SDL file. In particular, one can
use SDL task (see figure "Figure 20: Assignment task statements in action
statements" on page 53) or call (see figure "Figure 21: Call statement in
action statements" on page 53) statements in action statements.

Figure 20: Assignment
task statements in action
statements

Figure 21: Call
statement in action
statements

54 KLOCwork MSC to SDL Synthesizer Reference Manual

SDL procedures used in call statements may be defined for example after
process keyword in a text symbol. The task statement is mapped to the
following SDL statement (on page 54).

Plain or type-based mapping of a task statement

Phrase representation Graphical representation
...

task x:=10;

...

The call statement is mapped to the following SDL statement (on page 54).

Plain or type-based mapping of a call statement

Phrase representation Graphical representation
...

call f(1);

...

For more details of using SDL data in the input MSC models, see Synthesis:
Data manipulations in MSCs (on page 83).

 Chapter 5 Synthesis: Basic MSC scenarios 55

Instance creation
Creation and termination of instances can be specified within MSCs. An
instance may be created by another instance. No message events before the
creation can be attached to the created instance.

The creation event is depicted by the end of the <createline symbol> that has
no arrowhead. The creation event is attached to the instance axis. If the
<create area> is generally ordered, this ordering applies to the creation event.
The arrowhead points to the <instance head symbol> of the created instance.

Create defines the dynamic creation of an instance by another. Dynamically
there can be only one creation in the life of an instance and no events on the
instance may take place before its creation.

<create area> ::= <createline symbol>
 [is associated with <parameter list>]
 is attached to <instance axis symbol>
<instance head area>

<createline symbol> ::=

In general, the MSC create event is mapped to the following SDL constructs
for the SDL process-creator in the plain and type-based SDL mappings of the
create event (as shown in the following figures).

Figure 22: Create event
without parameters

Mapping of create event, Plain SDL

Phrase representation Graphical representation
…

create P;

…

56 KLOCwork MSC to SDL Synthesizer Reference Manual

Mapping of create event, Type-based SDL

Phrase representation Graphical representation
...

call CREATE_P

(VAR_OFFSPRING);

...

In the type-based SDL model (shown in the following figure), process
creation is implemented as follows:

� The generated block type has a special "manager" process for creating
other processes. This "manager" process receives the create message and
creates the required process. See "Manager" process P_gen (see "Figure
23: "Manager" process P_gen" on page 57). With the CREATE_ACK
message, it returns the new process PID.

� The parent process has procedure CREATE_P for each child process P it
creates. See Procedure CREATE_P (see "Figure 24: Procedure
CREATE_P" on page 57). This procedure performs all necessary
interprocess communications process creation. It returns the PID of the
created process. By calling this procedure, this PID is stored to the
variable VAR_OFFSPRING of the parent process.

 Chapter 5 Synthesis: Basic MSC scenarios 57

Type-based SDL, Graphical representations
Figure 23: "Manager"
process P_gen

Figure 24: Procedure
CREATE_P

58 KLOCwork MSC to SDL Synthesizer Reference Manual

Create parameters and message parameters are handled similarly to message
parameters. The created process receives values through its formal
parameters and may analyze them and assign to local variables.

The following syntax is used:

Figure 25: Create event
with parameters

Instance stop
The instance stop is the counterpart to the instance creation, except that an
instance can only stop itself whereas an instance is created by another
instance.

The top at the end of an instance represents the termination of this instance.
Dynamically there can be only one stop event in the life of an instance and no
events may take place after the instance stop.

<stop symbol> ::= X

The KLOCwork MSC to SDL Synthesizer interprets endinstance and
stop symbols in the following way:

� the stop symbol denotes a termination of the corresponding instance
� the endinstance symbol means that the behavior of the instance is

not defined after this symbol on the given MSC

Instance stop

Phrase representation Graphical representation
....

stop;

 Chapter 5 Synthesis: Basic MSC scenarios 59

 61

C H A P T E R 6

Synthesis: Coregions

Coregion makes it possible to describe areas where events may come in any
order. Such a coregion in particular covers the practically important case of
two or more incoming messages where the ordering of consumption may be
interchanged. Conversely, when broadcasting messages, the order of two or
more outgoing messages may be interchanged.

For MSCs a total ordering of events is assumed within each instance. By
means of a coregion an exception to this can be made: events contained in the
coregion are unordered.

If a timer start and the corresponding time-out or stop are contained in a
coregion, then an implicit general ordering is assumed between the start and
the time-out/stop.

<concurrent area> ::= <coregion symbol>
 is attached to <instance axis symbol>
 contains <coevent area>
<coregion symbol> ::=

<coevent area> ::= { <message event area>
 | <incomplete message area>
 | <action area>
 | <timer area>
 | <create area> } *

In the generated system all these events are executed sequentially. The order
of their execution depends on the following:

� events occurring during the runtime (like signal passing)
� decisions made by the KLOCwork MSC to SDL Synthesizer synthesis

algorithms

Note that normally the fixed order of event execution does not restrict the
functionality of the generated SDL process. This is achieved due to save *
constructs in SDL states. For instance, a coregion contains inputs of
messages a and b. The Synthesizer may generate their input in some fixed
order, for example, first a and then b. However, if b comes first to the
process, it is saved by the save * construct and is consumed in the next
state.

62 KLOCwork MSC to SDL Synthesizer Reference Manual

Events in a coregion are ordered by the Synthesizer using the following rules
in this order:

1 All active events are executed (that is, message output, timer set and
reset, instance creation and action events).

2 All stimuli are executed (that is, message input and timeout events).

3 If a coregion contains a creation of process P and a message output to P,
then any creation of P is executed before any message is output to P.

There are two methods for code generation for coregions. Generation of
active event permutations may be enabled or disabled.

� If permutation generation is enabled:
� all sequences of active events satisfying condition (3) above are

generated

� at least one sequence of stimuli is generated
� If permutation generation is disabled:
� at least one sequence of active events is generated, and

� at least one sequence of stimuli is generated

By default, the permutation generation is disabled. To enable it, use the –C
command line option or the following line in msc2sdl.ini:

 OPT_EXPAND_COREGIONS = yes

Note: It is possible that only one sequence of stimuli in a coregion will be
generated. Normally, this does not restrict functionality of the generated SDL
process. This is achieved due to save * constructs in SDL states. Let's say, for
instance, a coregion contains inputs of messages "a" and "b". The Synthesizer
may generate their input in some fixed order. For example, it may first
generate "a" and then "b". However if "b" comes first in the process, it is
saved by the save * construct and is consumed in the next state.

 63

C H A P T E R 7

Synthesis: Compositions of multiple
MSCs

In This Chapter
Specifying more complex behavior....................................63
Implicit composition ..64
Composition using HMSCs..65
Composition using conditions..71

Specifying more complex behavior
To specify more complex behavior, for example behavior that involves
alternatives or repeatable events, one should use compositions of multiple
basic MSCs. The KLOCwork MSC to SDL Synthesizer supports three ways
for describing composition of MSCs:

� implicit composition
� high-level MSCs (HMSC), or
� global conditions

HMSCs are preferred because they visualize the roadmap of several scenarios
and allow reuse of an MSC several times in the specification.

The composition rules are different for HMSCs and global conditions.

Note: If an input model contains at least one HMSC, the HMSCs composition
rules are applied. Otherwise, the rules for global conditions are applied.

The following sections describe each type of composition in more detail.

64 KLOCwork MSC to SDL Synthesizer Reference Manual

Implicit composition
When the input model consists of several basic MSCs, they are considered as
alternative behaviors of a set of actors. For example, the two MSCs in the
following figure (msc Success and msc Fail) define two possible scenarios
for the set of two actors (instances Client and Server).

Figure 26: Implicit
composition of two MSCs

 Chapter 7 Synthesis: Compositions of multiple MSCs 65

Composition using HMSCs
High-level MSCs provide a means to graphically define how a set of MSCs
should be combined. An HMSC is a directed graph in which each node is one
of the following things:

� a start symbol (there is only one start symbol in each HMSC)
� an end symbol
� an MSC reference
� a condition
� a connection point

The flow lines connect the nodes in the HMSC and they indicate the
sequencing that is possible among the nodes in the HMSC. The incoming
lines are always connected to the top edge of the node symbol, whereas, the
outgoing flow lines are connected to the bottom edge. If there is more than
one outgoing flow line from a node this indicates an alternative.

The MSC references can be used to reference a single MSC. The conditions
in HMSCs can be used to indicate global system states or guards. The
connection points are introduced to simplify the layout of HMSCs and have
no semantic meaning.

<hmsc diagram> ::= <msc symbol>
 contains <msc heading> <mscexpr area>
<mscexpr area> ::= { <text layer>
 | <start area>
 | <node expression area>*
 | <hmsc end area> * } set
<start area> ::= <hmsc start symbol>
 is followed by { <alt op area>+ } set
<hmsc start symbol> ::=

<hmsc end area> ::= <hmsc end symbol>
 is attached to { <hmsc line symbol>+ } set
<hmsc end symbol> ::=

<hmsc line symbol> ::= <hmsc line symbol1>
 | <hmsc line symbol2>
<hmsc line symbol1> ::=

<hmsc line symbol2> ::=

66 KLOCwork MSC to SDL Synthesizer Reference Manual

<alt op area>::= <h
 is attached to {<node area> | <hmsc end symbol>
}

msc line symbol>

<node expression area> ::=
 is followed by {<alt op area>+ } set
 is attached to {<hmsc line symbol>+ } set
<node area> ::= <hmsc reference area>
 | <connection point symbol>
 | <hmsc condition area>
<hmsc reference area> ::= <msc reference symbol>
 contains <msc name>
<connection point symbol> ::=
<hmsc condition area> ::= <condition symbol>
 contains <condition text>

The KLOCwork MSC to SDL Synthesizer uses the following rules for
HMSC analysis.

1 Each MSC reference in HMSC must point to a simple MSC (not to an
HMSC). This MSC must be present in the input to KLOCwork MSC to
SDL Synthesizer.

2 If a simple MSC is not mentioned in some HMSC, it is ignored.

3 All conditions with the same name on HMSCs are identified. For
example, HMSC H3 in Sequential behavior with HMSC (see "Figure 27:
Sequential behaviour with HMSC" on page 67) defines a loop.

4 If several HMSCs are specified in the input, they are merged. Their start
symbols are joined together. Rule 3 above for conditions is then applied
for the resulting HMSC.

5 If HMSCs are used, only local decisions in simple MSCs are analyzed.
See Explicit local decisions based on data (on page 88). All other
conditions are ignored.

 Chapter 7 Synthesis: Compositions of multiple MSCs 67

Let's consider several examples of composition using HMSC.

By using sequences of MSC references, one can define sequential behavior.
Consider for example HMSC H1 (see "Figure 27: Sequential behaviour with
HMSC" on page 67). HMSC H1 defines a sequence of MSCs M1 and M2.

The input scenario model (HMSC H1 and MSCs M1 and M2) define a
system with three actors (P,Q and R). The behavior is defined as follows:

� First, actor P sends message m to actor Q
� Second, actor Q sends message n to actor R

Figure 27: Sequential
behaviour with HMSC

68 KLOCwork MSC to SDL Synthesizer Reference Manual

The composition of MSCs M1 and M2 is performed as follows. Consider a
restricted case when no instance creation is used in MSCs.

Note: The axes with equal names in M1 and M2 are concatenated. If an axis
name is present in only one of two MSCs, this axis is copied to the resulting
MSC.

For example, the composition of MSCs M1 and M2 in Sequential behavior
with HMSC (see "Figure 27: Sequential behaviour with HMSC" on page 67)
is equivalent to MSC Trace. By using cycles in HMSCs, one can represent
repeatable behavior. Consider, for example, HMSC H2 in Repeatable
behavior with HMSC (see "Figure 28: Repeatable behavior with HMSC" on
page 68). HMSC H2 defines repetition of the MSC M3.

Figure 28: Repeatable
behavior with HMSC

 Chapter 7 Synthesis: Compositions of multiple MSCs 69

Repeatable behavior with HMSC (see "Figure 28: Repeatable behavior with
HMSC" on page 68) defines a system with two actors (P and Q) in which

� Actor P sends message m to actor Q, and then
� Actor P repeatedly sends message s to actor Q.

There is no single basic MSC that is equivalent to HMSC H2 (as opposed to
the previous example). The history of the system's functioning after n
transmissions of the message s is represented at MSC Trace. Note, also, that
the ordering between events B (output of s) and A (input of m) is not
specified by H2. It is possible that event B occurs before event A.

By using alternative flowlines in HMSCs, one can specify alternative
behavior. Consider for example HMSC H3 in Alternative behavior with
HMSC (see "Figure 29: Alternative behavior with HMSC" on page 69).
HMSC H3 defines MSCs Success and Fail as two alternative behaviors.
HMSC H3 contains a condition with the name choice that represents the
decision point in the behavior. MSCs Success and Fail are described in
Implicit composition of two MSCs (see "Figure 26: Implicit composition of
two MSCs" on page 64).

Note: HMSC H3 is equivalent to implicit composition of MSCs Success and
Fail.

There is no single MSC that is equivalent to HMSC H3.

Figure 29: Alternative
behavior with HMSC

70 KLOCwork MSC to SDL Synthesizer Reference Manual

By using a combination of the above techniques, one can represent arbitrary
behaviors. Consider for example HMSC H4 in Loop with an alternative and
an exit see "Figure 30: Loop with an alternative and an exit" on page 70.
HMSC H4 defines a system consisting of two actors (P and Q). The behavior
of the system is a repetition of sending a message ping to actor P by actor Q
(MSC M4), optionally followed by sending message close by actor Q to actor
P (MSC M5).

Note: The connection symbol in HMSC describes alternative choice between
MSCs M4 and M5. The same connection symbol is also the endpoint to the
cyclic flowline.

Figure 30: Loop with an
alternative and an exit

 Chapter 7 Synthesis: Compositions of multiple MSCs 71

Composition using conditions
Global conditions provide another way to specify control flows in MSCs (an
alternative to HMSCs). The simplest and most important case of a global
condition is a condition, which shares all instances on the MSC diagram. A
condition may be considered as global in a few more cases (described in
What conditions are considered global? on page 75) Initial conditions are
further described in Initial conditions (on page 74).
<condition area> ::= <condition symbol>
 contains <condition name> [<shared>]
 is attached to { <instance axis symbol> * }
<condition symbol> ::=

<condition name> ::= <name>
<shared> ::= shared { [<shared instance list>] | all }
<shared instance list> ::= <instance name>
 [, <shared instance list>]

The <condition area> may refer to just one instance, or is attached to several
instances. If a shared <condition> crosses an <instance axis symbol> which
is not involved in this condition the <instance axis symbol> is drawn through.

Global conditions are used to define behavior as follows. Informally
speaking, a process may "continue" from any global condition to another one
with the same name. In other words, the following rule is used:

If on MSCs M1 and M2 instance P intersects a global condition C, the
behavior of P before C on M1 may be continued by behavior of P after C on
M2. (In general, M1 may coincide with M2).

The global condition with the name START denotes the beginning of the
system behavior.

Let's consider some examples of specifying complex behavior using global
conditions.

MSCs M6 and M7 in Sequential behavior with conditions (see "Figure 31:
Sequential behavior with conditions" on page 72) are equivalent to HMSC
H1 in Sequential behavior with HMSC (see "Figure 27: Sequential
behaviour with HMSC" on page 67) and demonstrate how sequential
behavior is specified with conditions.

72 KLOCwork MSC to SDL Synthesizer Reference Manual

Figure 31: Sequential
behavior with conditions

An empty line connects START and C for R in M6. If this line did not exist,
there would be no way for R from START to C and the input of n in M7
would be lost.

Specification of repeatable behavior in the following figure is equivalent to
HMSC H2 in Repeatable behavior with HMSC (see "Figure 28: Repeatable
behavior with HMSC" on page 68).

Figure 32: Repeatable
behavior with conditions

 Chapter 7 Synthesis: Compositions of multiple MSCs 73

Specification of alternative behavior in the following figure is equivalent to
HMSC H3 in Alternative behavior with HMSC (see "Figure 29: Alternative
behavior with HMSC" on page 69).

Figure 33: Alternative
behavior with conditions

The above rules can be applied to specify arbitrary behavior. For example,
composition of MSCs M9 and M10 in Loop with an exit option with
conditions (see "Figure 34: Loop with an exit option with conditions" on
page 73) is equivalent to HMSC H4 in Loop with an alternative and an exit
see "Figure 30: Loop with an alternative and an exit" on page 70.

Figure 34: Loop with an
exit option with
conditions

74 KLOCwork MSC to SDL Synthesizer Reference Manual

Initial conditions
Condition is called initial if each axis on the MSC

� has this condition at the beginning, or
� this instance is created.

For example, condition START is initial on MSCs M6 in Sequential
behavior with conditions (see "Figure 31: Sequential behavior with
conditions" on page 72) and MSC M7 in Global and local conditions see
"Figure 35: Global and local conditions" on page 74. (The bold dashed lines
in Global and local conditions are required in the next subsection). The
KLOCwork MSC to SDL Synthesizer uses the following rule:

If an MSC is not empty and has no initial condition, the initial
condition START is added to it.

Figure 35: Global and
local conditions

 Chapter 7 Synthesis: Compositions of multiple MSCs 75

What conditions are considered global?
The KLOCwork MSC to SDL Synthesizer uses the following rule to find the
global conditions:

The MSC may be transformed so that the global conditions split it into
parts by horizontal lines. These lines intersect no symbols except the
corresponding conditions.

For example, conditions start and c in MSC M11 (Global and local
conditions see "Figure 35: Global and local conditions" on page 74) are
global but D is not. The bold dashed lines in Global and local conditions
show how the global conditions split the MSC. Therefore it is possible to
compose M11 and M7 by means of condition C.

As a rule, it is impossible to add new conditions to the found set of global
conditions so that the property in the frame is not violated. In particular,
every condition that shares all instances on the diagram and is not a local
decision is global.

 77

C H A P T E R 8

Synthesis: End of instance handling

The control flow end of the input MSC specification is defined as follows:

� when HMSC is used, it is the HMSC end symbol, or
� when global conditions are used, it is an endinstance symbol after which

no events on another MSC may follow.

The control flow end may be handled in three different ways depending on
synthesizer options. These options are specified as follows:

� Command line options:
-e type, --end type

� Lines in msc2sdl.ini file:
OPT_END_HANDLING = type

String type here specifies the way of handling the control flow end. It may
take the following values:

1 type = state: In this case when a process reaches the control flow end it
passes to a state where it doesn't accept any signals and doesn't perform
any actions. This is the default option.

2 type = stop: In this case when a process reaches the control flow end it
stops (that is, executes a stop symbol).

3 type = merge: In this case alternative branches ending at the control flow
end are merged. If one branch contains another one at the beginning the
shorter branch is ignored. This may be useful when several simple MSCs
are used for synthesis, which are execution traces of some system.
Suppose that for some of them their recording have been interrupted
before the system finished its work. Then endinstance symbols may mean
the end of the system observation rather than the end of its functioning. If
the behavior after an endinstance symbol is defined on some longer trace
it would be reasonable to ignore this endinstance symbol. This may be
achieved by using merge option for handling the control flow end.

 79

C H A P T E R 9

Synthesis: Non-determinism
considerations

In many cases input MSCs do not specify deterministic behavior for all or
some instances. Consider, for example, MSCs in the following figure:

Figure 36: Non-
deterministic scenario

Here process Q may send either a 'ping' or a 'close' message. We don't know
from the MSCs what the choice between them depends on.

The KLOCwork MSC to SDL Synthesizer treats such branching as non-
deterministic. It normally uses the SDL construct decision any to
implement it. For example, for process Q the following code fragment would
be generated:

Plain SDL

Phrase representation Graphical representation
connection START_1:

 decision any;

 ():

 output CLOSE via R1;

 nextstate START_0;

 ():

 output PING via R1;

 join START_1;

 enddecision;

80 KLOCwork MSC to SDL Synthesizer Reference Manual

The following general rule for handling non-determinism applies. Let's call
stimuli message inputs and timeout events. All events that are neither stimuli
nor local decisions are called active events. They include actions, timer set
and reset events, create and stop events. In general, decision any
constructs may be generated in the following cases:

� When there are several alternative active events (as in the example in
Loop with an alternative and an exit see "Figure 30: Loop with an
alternative and an exit" on page 70).

� When there are alternative active events and stimuli.
� When there are alternative local decisions and other events. In this case a

non-critical warning is reported for the decision any construct.

 81

C H A P T E R 1 0

Synthesis: Slices of MSCs

Slices are used to synthesize the SDL model from a subset of instances rather
that the complete set of instances in the input MSC specification. This subset
(the so-called slice) is defined as follows:

� The user selects some MSC instances
� The selected set of instances form the slice of the input MSC

specification
� All other instances will be called external instances.

The generated SDL model will contain processes only for the instances from
the slice. The events from the external instances are ignored. These external
instances are handled as the system environment. Message exchange with
them is interpreted as message exchange with the environment. That is,

� a message output to an external instance is interpreted as output to the
environment,

� a message input from an external instance is treated similarly.

If an instance from the slice creates an external instance a message output is
generated instead of process creation. The message name is
CREATEPROC_x where "x" is the created instance name.

In order to include instances <inst1>,…, <instn> to the slice one should

� use -S <inst1> … -S <instn> options in the command line, or
� include the following line to msc2sdl.ini file:

SLICE = "<inst1>…<instn>"

By default no slice is specified. This is equivalent to a slice containing all
instances.

 83

C H A P T E R 1 1

Synthesis: Data manipulations in MSCs

In This Chapter
Introduction..83
Automatic data declarations ...84
Explicit data declarations ...86
Explicit local decisions based on data................................88
Implicit local decisions based on data................................90

Introduction
The KLOCwork MSC to SDL Synthesizer performs data manipulations
within the framework of the MSC scenario language, for example:

� declarations of variables
� actions (see Action on page 53)
� messages with parameters (see Message on page 44)
� create events with parameters (see Instance creation on page 55)
� local decisions on data

This allows adding code in SDL to MSCs and describing operations on data.

84 KLOCwork MSC to SDL Synthesizer Reference Manual

Automatic data declarations
Every signal used in the synthesized SDL model must have a declaration.

The KLOCwork MSC to SDL Synthesizer generates signal definitions semi-
automatically using the information given in the specification. Here the
derivation algorithm for signal parameter sorts is described. The same
algorithm is used for finding sorts of process formal parameters.

Suppose in the source MSCs signal S is used with parameters. The
KLOCwork MSC to SDL Synthesizer finds parameter sorts in the following
way.

Consider two cases.

1 S gets its description (its signature) in signal sentence following data
keyword in a text symbol. This description is transmitted to the output
file. For process formal parameters process sentences are used.

2 S has no explicit description of its parameters. Then its signature is found
out by the context of MSC document.

To do this, the KLOCwork MSC to SDL Synthesizer derives the type of each
parameter.

1 If assignment to a variable or a single variable is used as the parameter,
and this variable is described in a text symbol after data sentence, the
type of this variable is identified with the type of the signal parameter.

2 Otherwise, it is assumed that the parameter type is ENUM. ENUM is the
unique type for all signal or process parameters matching (2b). All
constants used as values of these parameters are considered as literals of
ENUM. If the parameter type is defined according to (1) or (2a) then the
names involved to the signal instances are not considered as literals of
ENUM.

 Chapter 11 Synthesis: Data manipulations in MSCs 85

Examples:
Figure 37: Automatic
derivation of
declarations for
undefined parameter of
message

In the preceding figure, rule (2b) is applied. The definition of signal m is the
following:

signal m(ENUM);

newtype ENUM

 literals OK;

endnewtype;

 Figure 38: Automatic

derivation of
declarations for defined
parameter of message

In the preceding figure, signal m has INTEGER as the type of its single
parameter as defined in dcl clause:

signal m(INTEGER);

86 KLOCwork MSC to SDL Synthesizer Reference Manual

Explicit data declarations
Contents of a text symbol have the following syntax.

<text-symbol-contents> ::=
data <declaration>*
 | process <text>
 | actor <name> <text>
 | system <text>
 | use <import-list>;
 | block <text>
 | <text>

The <text> here is any text. The last alternative describes the case in which
there is no keyword data, process, actor, system, use or
block at the beginning of the text inside the symbol. In this case, the text
symbol is ignored.

If the text inside the symbol begins from data keyword, it may contain
declarations of variables, signals or processes according to the following
syntax:
<declaration> ::=
 dcl <variable name> {, <variable name> }* <sort
name>;
 | signal <signature> {, <signature> };
 | process <signature> {, <signature> };
<signature> ::= <name> [(<sort name>, {<sort name>}*)
]

<sort name> is a name of any SDL sort.

Every variable defined in a dcl construct is placed to all processes for MSC
instances.

The signal or process signatures define types of signal of process
parameters. In absence of signatures, the Synthesizer derives parameter types
implicitly.

After use keyword in text symbols follow external package names. These
packages are imported into the generated system (in plain SDL) or the
package (type-based SDL): <import-list> ::= <package name>
{, <package name> }*

 Chapter 11 Synthesis: Data manipulations in MSCs 87

Example: Figure 39: Process and
signal parameters are
defined explicitly

The process, block, system, and actor keywords in text
symbols are used to specify SDL code that is directly copied to the output
file. The code is denoted as <text> in BNFs and is not analyzed by MSC to
SDL Synthesizer.

Depending on the keyword, the code is placed in different places within the
synthesized system.

process <text> – <text> is generated into processes for all
instances

actor <name>
<text>

– <text> is generated into process for instance
<name>

block <text> – <text> is generated on the block diagram
showing interaction between instances

system <text> – <text> is generated into the system

Note: The KLOCwork MSC to SDL Synthesizer does not take information
about variables, signals and processes from SDL code specified in this way.
Therefore, it is often preferable to use the data keyword to describe
variables, signals, and process parameters.

88 KLOCwork MSC to SDL Synthesizer Reference Manual

Explicit local decisions based on data
MSC to SDL Synthesizer supports specification of local decisions, which
check values of process variables. Syntactically, local decisions are specified
as local conditions in the corresponding instance. Each decision contains a
variable name and a guard. Variable on the values of which decision is made
is written in the condition symbol. The guard specifies a condition on the
variable value. It is written in a comment attached to the local condition.

The syntax of the guard is as follows:
<guard> ::= <answer> | else

in which <answer> is any <answer> clause of SDL (such clauses describe
alternative decisions, (see [Z.100, 2.7.5]). Examples of local decisions are:

Figure 40: Example of
explicit local decisions

The semantics of such a condition are as follows. During runtime, a process
may pass through it only when the value of the Boolean expression is true.
Alternative sequences of events can be specified in different MSCs using
local conditions with the same name and different guards.

Guard ELSE defines the default event sequence, which is executed when
other alternatives evaluate to false.

In general, the following decision

Figure 41: Explicit local
decision

 Chapter 11 Synthesis: Data manipulations in MSCs 89

is mapped to the following SDL:

Phrase representation Graphical representation
...

decision Var:

...

(answer):

...

The syntax of local decisions in MSC PR files is as follows (apostrophes should be
doubled inside <guard> after comment keyword when textual syntax is used).

<local decision> ::=
 condition <variable name> comment '<guard>';

The following rules for writing decisions are recommended:

1 Alternative local decisions must have the same variable name. Their
guards should be mutually exclusive.

2 Suppose that HMSCs are used. Then local decisions in different MSCs,
which describe alternative branches, must appear either immediately after
instance heads or after equivalent event sequences after instance heads.
References to these MSCs must follow the same symbol on the HMSC
(for example, the same condition).

90 KLOCwork MSC to SDL Synthesizer Reference Manual

Implicit local decisions based on data
Consider now the case when some parameters of a message are constants. In
the following diagram, instance S chooses 1 or 2 as the parameter of message
m. Instance R receives m and depending on the parameter value chooses its
further actions. If the received value is 1 R sends the message 'ok', otherwise
it sends 'error'.

Figure 42: Parameters of
a message are constants

 Chapter 11 Synthesis: Data manipulations in MSCs 91

The syntax of constants is as follows:
 <constant> ::=
 <literal name>
 | <integer constant>
 | <real constant>
 | <character string constant>
 | <boolean constant>
<boolean constant> ::= true | false
<integer constant> ::= [+ | -] <digit> +
<real constant> ::= [+ | -] (<digit> * . <digit> + |
<digit> + . <digit> *) [(E | D) <integer constant>]
<character string constant> ::= ' <text> ' | " <text> "

Consider the case in which a message has one parameter. The behavior of the
sending and receiving processes is defined as follows. Let M be the message
name. If the message parameter is a constant, the sender simply sends it. The
receiver, after receiving the message M, proceeds as follows. Consider all
alternative behavior branches for the receiver after reception of M. For
example, in the preceding figure, process R replies either with 'ok' or with
'error'.

Consider now the following three cases.

1 The received value matches a constant parameter in exactly one branch.
Then the receiver executes this branch. For example, for MSC H5
process R replies with 'ok' to 'm(1)' and with 'error' to 'm(2)'.

2 The received value does not match any constant (the condition of the
previous point is false), but there is one branch with a variable or an
assignment in the parameter. That branch is executed. For example, for
MSC H6 in the following figure, process R replies with 'unknown' if it
receives m(x) with x not equal to 1.

3 In all other cases, the KLOCwork MSC to SDL Synthesizer defines the
behavior of the receiver by its built-in algorithm.

92 KLOCwork MSC to SDL Synthesizer Reference Manual

For messages with more than one parameter, the constants are handled by
generalization of the algorithm described above.

Figure 43: HMSC and
MSC diagrams of
messages with
parameters

 93

C H A P T E R 1 2

Example of an MSC specification: A
simple network

In This Chapter
Description of the simple network93
MSC specification..94

Description of the simple network
This section describes an example of an MSC specification. It also describes
the steps for jump-starting an SDL project within Telelogic Tau using the
KLOCwork MSC to SDL Synthesizer.

The MSC specification describes a simple network that provides connections
between subscribers. The network provides services for initiating and
terminating connections. Connection can be terminated only by the same
subscriber that initiated it. During connection initiation, an abnormal
situation may occur when the called subscriber does not reply within a certain
time.

94 KLOCwork MSC to SDL Synthesizer Reference Manual

MSC specification
The network is represented on MSC diagrams by the instance Network. The
instance Client represents the active subscriber who initiates and terminates
connections. The instance Server represents the passive subscriber to which
the Client connects.

Each MSC specification describes a single communication session between
Client and Server. The session includes connection initiation and termination.
It progresses according to the following scenario:

� A connection request is sent from Client to Network and is passed to
Server as shown on MSC Connect_Request.

� Network gets a response from Server before the timeout expires. In this
case a connection is initiated successfully. This is described in MSC
Connect_Establish.

� The following abnormal situation can also occur: Client doesn't reply
during the specified time interval as described on MSC
Connect_Timeout. In this case, connection fails.

All the MSC diagrams shown in this section are used as input to the
KLOCwork MSC to SDL Synthesizer.

One of them, HMSC diagram for Network example, is an HMSC. All the
others are simple MSCs. The HMSC defines the sequence of MSC
composition (or, in other words, sequence of their execution). In the rest of
this subsection these MSC diagrams are described. Note that, as an HMSC is
present in the specification, the global condition in simple MSCs have no
semantics and play the role of comments.

The first MSC diagram Connect_Request see "Figure 45: MSC diagram
Connect_Request" on page 95 describes a request for a connection from
Client to Server through the Network. Client sends message ConnectReq to
Network and Network passes it to Server. MSC starts with condition start
and finishes with condition wait, after which Network waits for Server to
respond.

 Chapter 12 Example of an MSC specification: A simple network 95

Figure 44: HMSC
diagram for Network
example

Figure 45: MSC diagram
Connect_Request

96 KLOCwork MSC to SDL Synthesizer Reference Manual

The next MSC is Connect_Establish. On this MSC Network receives
Respond signal from Server before the timeout expires and passes the
Respond signal to the Client. After this the connection is considered
established and all actors go to the global condition established.

Figure 46: MSC diagram
Connect_Establish

MSC Connect_Timeout describes abnormal behavior of the model. If Client
does not reply within the specified time, Network sends the message Fail to
the Client and connection fails. After this, Client and Server instances are
stopped, but the behavior of the Network is unspecified.

Figure 47: MSC diagram
Connect_Timeout

 Chapter 12 Example of an MSC specification: A simple network 97

To end the connection, Client sends the message Disconnect to Network, and
Network passes this message to Server. After this connection is ended
(condition disconnected) and Client and Server instances stop,. Network
instance does not stop, but its behavior is unspecified in this case too. It is
described in MSC diagram Connect_Disconnect (see "Figure 48: MSC
diagram Connect_Disconnect" on page 97).

Figure 48: MSC
diagram
Connect_Disconnect

The model and diagram files for Telelogic Tau describing the Network
example may be found in the doc/examples/Network subdirectory of the
MSC to SDL Synthesizer installation directory.

 99

C H A P T E R 1 3

MSC PR syntax

In This Chapter
Input language..99
Keywords ...100
Lexical rules ...101
Syntax rules..102

Input language
The input language, supported by MSC to SDL Synthesizer is a combination
of the phrase representation syntax of Message Sequence Charts (MSC PR)
published in Z.120 standard by ITU in 1992 and 1996. Some supported
extensions to this language are described in the latest edition of the standard,
the so-called MSC-2000. Some constructs of the MSC language are not
supported (refer to Known limitations on page 115). Complete syntax rules
of the language accepted by MSC to SDL Synthesizer are presented below in
BNF notation.

100 KLOCwork MSC to SDL Synthesizer Reference Manual

Keywords
<keyword> ::=

 action
 | all
 | alt
 | begin
 | block
 | comment
 | concurrent
 | condition
 | connect
 | create
 | decomposed
 | end
 | endconcurrent
 | endinstance
 | endmsc
 | endmscdocument
 | env
 | exc
 | expr
 | found
 | from
 | in
 | inst
 | instance
 | instancehead
 | loop
 | lost
 | msc
 | mscdocument
 | name
 | opt
 | out
 | par
 | process
 | reference
 | related
 | reset
 | seq
 | service
 | set
 | shared
 | stop
 | system
 | text
 | timeout
 | to

 Chapter 13 MSC PR syntax 101

Lexical rules
 <apostrophe> ::= '
<quoted text> ::=
 <apostrophe>
 { <any character except apostrophe>
 | <apostrophe> <apostrophe> } *
 <apostrophe>
 | <any character except semicolon> *
<name> ::= { <letter> | <digit> | <underline> } +
<underline> ::= _
<digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
<letter> ::= a | b | ... | z | A | B | ... | Z

102 KLOCwork MSC to SDL Synthesizer Reference Manual

Syntax rules
<msc specification> ::=
 { <msc document>
 | <msc>
 | <hmsc> } *
<msc document> ::=
 mscdocument <msc document name>
 [related to <sdl reference>] <end>
 { <msc> | <hmsc> } *
 [endmscdocument <end>]
<end> ::= [comment <quoted text>] ;

Note: An optional related to clause is supported for compatibility with
MSC standard. (MSC'92 syntax is used.) The synthesis algorithm ignores it.

<sdl reference> ::=
 { <path item> / } * <name>
<path item> ::=
 { system | block | process } <name>
<msc> ::=
 { msc | submsc } <msc name> <end>
 [<inst decls>]
 { <condition> <end> } *
 { <msc statement> | <text definition> } *
 { <condition> <end> } *
 endmsc } <end>

Note: Initial and Final conditions around a sequence of <msc statement>s and
<text definition>s are supported for compatibility with the MSC'92 standard.

<inst decls> ::=
 inst <instance decl> { , <instance decl> }* <end>
<instance decl> ::=
 <instance name> [: <instance kind>]
<instance kind> ::=
 [system | block | process | service] <name>

Note: Optional <instance kind> is supported for compatibility with
the MSC standard. (MSC'92 syntax is used.) The synthesis algorithm ignores
it.

<event list> ::=
 { <event> <end> } +
<msc statement> ::=
 <sharing info> : <event list>

 Chapter 13 MSC PR syntax 103

 | <old instance>
<old instance> ::=
 instance <instance name> [: <instance kind>]
 [decomposed] <end>

Note 1: <old instance> is supported for compatibility with the MSC-92
standard.

Note 2: decomposed keyword is ignored by the synthesis algorithm.

<event> ::=
 <instance head>
| <message input>
| <message output>
| <create>
| <timer statement>
| <action>
| <stop>
| <endinstance>
| <concurrent>
| <endconcurrent>
| <condition>
| <not supported event>

<instance head> ::=
 { instance | instancehead }
 [<instance kind>] [decomposed]

Note: instancehead keyword is supported for compatibility with the
MPR format of Telelogic Tau.

<message input> ::=
 in <msg ident> from <address>
<message output> ::=
 out <msg ident> to <address>
<msg ident> ::=
 <message name> [, <message instance name>]
 [<parameters>]

Note: Syntax and semantics of <parameters> are described in Message on
page 44 .

<address> ::=
 <name>
| env
| lost [<name> | <env> }
| found [<name> | <env> }
<condition> ::=
 condition <condition name>

104 KLOCwork MSC to SDL Synthesizer Reference Manual

 [shared <sharing info>]
 | <local decision>
<sharing info> ::=
 <instance name> { , <instance name> } *
 | all

Note: Interpretation of global conditions is explained in Composition using
conditions (on page 71)

Note: <local decision> is an extension to the MSC language supported
by MSC to SDL Synthesizer. Local decisions are described in Explicit local
decisions based on data (on page 88) .

<create> ::=
 create <instance name> [<parameters>]
<action> ::=
 action <text>

Note: Analysis of <text> is described in Action on page 53 .

<stop> ::=
 stop
<endinstance> ::=
 endinstance
<concurrent> ::=
 concurrent
<endconcurrent> ::=
 endconcurrent
<timer statement> ::=
 <set>
 | <reset>
 | <timeout>
<set> ::=
 set <timer name> [, <timer instance name>]
 [<duration>]
<duration> ::= (<expression text>)

Note: <expression text> is any text with balanced brackets. Single and double
quotes (" , ') are not regarded as string delimiters.

<reset> ::=
 reset <timer name> [, <timer instance name>]
<timeout> ::=
 timeout <timer name> [, <timer instance name>]
<text definition> ::=

 Chapter 13 MSC PR syntax 105

 text <Quoted text> <end>

Note: <text> may contain constructs (extensions) described in Explicit data
declarations (on page 86)

<hmsc> ::=
 expr { <seq list> | '(' <seq list> ')' }
 { <label name> : <node> <end>
 | <text definition> } *
<node> ::=
 (<msc name>
 | '(' <msc name> ')'
 | condition <condition name>
 | connect)
 seq '(' <seq list> ')'
 | end
<seq list> ::= <label name> { alt <label name> } *

<not supported event> ::=
 { reference <name>
 | { alt | exp | par | opt |
 loop [< <name> [, <name>] >] }
 [begin [<name>] | end]
 }
 [shared <sharing info>]

Note: Textual constructs in MSC PR matching <not supported event> are not
analyzed and are ignored. However, syntax errors are not reported for them.

 107

C H A P T E R 1 4

Error messages

In This Chapter
Error message list ...108

The error messages, warnings and information messages from the
KLOCwork MSC to SDL Synthesizer are listed below.

Warning messages are designated as critical and non-critical. Non-critical
error messages concern less serious situations or are addressed to more
experienced users.

By default, the KLOCwork MSC to SDL Synthesizer reports only critical
warnings. To report non-critical warnings, do the following:

� If you are running Synthesizer integrated with Telelogic Tau, set the
following option in the msc2sdl.ini file.

OPT_ALL_WARNINGS=yes

� If you are running the Synthesizer from the command line, use the
option -w.

References to source MSCs are output in the following way:

� When you run the Synthesizer from Telelogic Tau, references to
source MSCs point (by default) to the symbols in GR diagrams. To
use references to PR files, set the following options in the
msc2sdl.ini file:

OPT_CLEAN_GEN_PR=no

OPT_CROSS_REFS=no

� When you run the Synthesizer from the command line, references to
source MSCs point (by default) to the lines in PR files.

108 KLOCwork MSC to SDL Synthesizer Reference Manual

Error message list

E ERROR message

W

CR

WARNING Critical

W

NC

WARNING Non-critical

W/I WARNING or
INFORMATION*

*Note: Some messages are displayed as WARNING messages when the
Synthesizer runs from Telelogic Tau and as INFORMATION messages when
the Synthesizer runs from the command line. In the list below, these
messages are labeled as W/I or WARNING/INFORMATION.

Error messages
E All inline expressions are

ignored (not supported)
Inline expressions are not supported by
the KLOCwork MSC to SDL Synthesizer.
They all are ignored.

 E All MSC references are ignored
(not supported)

MSC references are not supported by the
Synthesizer. They all are ignored.

 E Ambiguous reference to
<name>.

The message or timer identification is
ambiguous. An additional <message
instance name> (or <timer instance
name>) should be used to clearly identify
message (or timer) inputs and outputs.

E Cannot create temporary
directory

The Synthesizer cannot create a directory
where it stores MPR and SDL PR files.

It is created in the target directory.

E Cannot create output directory. The Synthesizer cannot create a directory
where it stores SDL GR files.

It is created in the target directory.

E Cannot write output file
<name>.

The Synthesizer cannot write to file
<name>.

E Constant is used as data target. A constant was used at the receiver side.
A variable should be used instead of
constant.

 Chapter 14 Error messages 109

E Could not get The MSC to SDL
Synthesizer installation
directory.

The Synthesizer cannot determine its
installation directory. It may not have
been installed properly.

E Creation of environment
instance is not allowed.

An creation event for instance with name
env_0 occurs in some MSC. The creation
of this instance is invalid as it represents
the environment.

E Duplicate CONCURRENT A concurrent clause was met in a
coregion.

E Duplicate instance end An endinstance or stop occurred after
instance was finished.

E Duplicate instance head The instance contains two instance heads.

E Duplicate label <name> A <label name> in an HMSC is duplicate
(see [GRAMMAR, HMSC])

E Duplicate shared instance name
<name>

A list of shared instance names contains a
duplicate element.

E Empty coregion. A coregion must contain at least one event
but it is empty.

E Empty field in message
parameters

The text of a message parameter is empty.

E Error connecting to PostMaster The Synthesizer failed to communicate
with Telelogic Tau PostMaster program.

E Error reading from PostMaster The Synthesizer failed to communicate
with Telelogic Tau PostMaster program.

E Error reading <filename>:
Diagrams other than MSC or
HMSC are

ignored.

The file extension of input documents for
the Synthesizer must be msc (for simple
MSCs) or mrm (for HMSCs). File names
and extensions of documents are
displayed in the Telelogic Tau Organizer
window.

E Error reading input files. You
must select some MSCs.

User did not select any MSC in the
Organizer.

E Error reading input files. On a PC, check that the directory name
does not contain spaces.

E Error: Unknown Code gen. Code generator name specified after –t in
the command line is invalid. The available
names are: plainsdl and tbsdl.

E Event after instance end An event after endinstance or stop.

E Found message is considered as
received from ENV

The Synthesizer interprets lost messages
as sent to the environment. This may
differ from the meaning assumed by the
user.

110 KLOCwork MSC to SDL Synthesizer Reference Manual

E Instance <name> cannot be
created twice

Several <create> events are used to create
the same instance A.

E Internal error An internal error in the KLOCwork MSC
to SDL Synthesizer. Please contact
support@KLOCwork.com (see
"mailto:support@KLOCwork.com -
mailto:support@KLOCwork.com")

E Invalid event ordering The ordering relation between events is
invalid. There may be a cyclic
dependency between them.

E Invalid event in a coregion This event cannot occur in a coregion.

E Invalid model name: <name>. The specified SDL model name is invalid.
It must be a string consisting of letters,
digits and underscore characters.

E Invalid multi instance event Event shares several instances but event
type does not allow this.

E Lost message is considered as
sent to ENV

The Synthesizer interprets found
messages as received from the
environment. This may differ from their
meaning assumed by the user.

E Missing CONCURRENT Endconcurrent clause was met but
concurrent clause is missing.

E Missing ENDCONCURRENT
in instance <name>

A coregion is not ended by
endconcurrent.

E Missing end of instance <name> The instance is not ended by endinstance
or stop.

E Missing instance head An event related to an instance is
encountered but the instance head is
missing.

 E MSC <name> redefined The MSC with the name <name> is
already defined.

E No actors found Input MSC files do not contain
information about at least one actor.

E No complementary statement for
<name>

For a message of timer arrow only one
end is specified.

E No MSC-PR files specified. At least one MSC PR file must be
specified in the command line.

E No start condition There is no start global condition in the
set of input MSCs.

E Node is not reachable from the
START symbol

There is no path from the START symbol
in an HMSC to this node.

 Chapter 14 Error messages 111

E Number of signal parameters is
different here

WARNING/ INFORMATION
and in this usage/definition.

Two occurrences of a signal/process have
different number of parameters (Refer to
(3), parameters of messages, Create
command).

E Prefix CREATE_ is not allowed
in names of signals (it is
reserved).

In the current implementation, the prefix
CREATE_ is not allowed in signal names.

E Prefix VAR_ is not allowed in
names of variables (it is
reserved).

In the current implementation, the prefix
VAR_ is not allowed in variable names.

E Redeclaration of <name>

WARNING/ INFORMATION
Previous declaration location.

A variable, signal or process <name> is
redefined in a text symbol.

E Reference to undefined label
<label name>.

A <label name> in an HMSC is
undefined.

E Reference to undefined MSC
<name>.

MSC <name> is not defined in the set of
input MSCs.

E Syntax error.

WARNING/ INFORMATION
expected tokens.

There is a syntax error in an input MPR
file. The tokens expected by the analyzer
are output in the WARNING (or
INFORMATION) message.

E Syntax error in data declaration. A syntax error after DATA keyword in a
text symbol.

E Syntax error in message
parameters.

The syntax of message parameters is
incorrect.

E <Telelogic Tau error text> Many
PostMasters running. Could not
decide which one to connect to.

Several PostMaster programs are running.
PostMaster program is a part of Telelogic
Tau. To avoid this error, terminate extra
active PostMaster programs.

E The model name is empty. The specified SDL model name is an
empty string.

E Too many errors. The maximal number of error messages
was exceeded.

E Too many warnings. The maximal number of warning or
information messages was exceeded.

E Two definitions of instance
<name> are not identical.

WARNING/ INFORMATION
Another definition of <name>.

The attributes of the instance do not
match its previous definition.

E Type of parameter <N> is
different here

WARNING/ INFORMATION
of this usage/definition.

Parameter number <N> has different
types in two occurrences of a signal or
process.

112 KLOCwork MSC to SDL Synthesizer Reference Manual

E Undefined instance <name>. An instance with the name A is not
defined.

Warning messages: Critical and non-critical
W

NC

Condition C ignored. Condition C is neither global nor local
decision – such conditions are ignored by
analyzer.

W

CR

Condition C is not reachable by
instance A.

It is impossible to reach global condition
C from the START condition moving
along the axis of instance A.

W

NC

Condition intersects the
following events:

WARNING/ INFORMATION
<event>.

Condition separates message output and
input of timer set and reset/timeout.

W

NC

Condition start is implicitly
inserted at the beginning of the
MSC <name>.

The MSC diagram has no initial global
condition, therefore, a start condition is
implicitly added to the beginning of the
MSC.

W

NC

Condition <name> ignored. Condition with name <name> is ignored.

W

NC

Condition <name> not reachable
by instance <inst>.

Condition with name <name> is not
reachable by instance with name <inst>.

W

NC

Creation of an external instance
was replaced by a message
output

This warning appears when some instance
in the slice tries to create new instance
outside of the slice.

W

NC

Data destination here conflicts
with another event.

WARNING/ INFORMATION
The another event mentioned
above.

The receiver can not decide in which of
several different variables to store data.
The Synthesizer leaves only one
alternative and discards all others. For
example, the following specification lead
to this warning:

alt signal m(x), signal m(y).

W

NC

Event in environment is ignored Reports that some events (actions, timers,
stops) out of the slice are ignored.

W

NC

Identifier name <word> is
reserved. Renamed to <new-
word>.

<word> is a keyword in SDL.

The Synthesizer substituted <new_word>
for the keyword.

 W

NC

Instance creation from
environment is ignored

Appears when some instance outside of
the slice tries to create new instance in the
slice (see Slices "Synthesis: Slices
of MSCs" on page 81).

 Chapter 14 Error messages 113

W

NC

Local decision has a non-
decision event as alternative

WARNING/ INFORMATION
Non-decision alternative to the
local decision

There are alternative local decision and
some non-decision event. An additional
decision any SDL construct is generated
here.

W
NC

Local decision has a single
alternative.

There is no alternative local decision for
this decision. The events after it are, thus,
always selected.

W

CR

MSC <name> is not used. There is no reference to MSC <name>
from the HMSC.

W/I
NC

No code generator specified. No code generator (plainsdl or tbsdl) was
specified when msc2sdl was called from
the command line. The source MSC
specification was checked for errors but
no SDL was synthesized.

W

NC

No continuation of condition
<name> for instance <inst>.

The behavior of instance <inst> after
global condition <name> is undefined.

W

NC

Node is not reachable from the
START symbol.

There is no path from the start symbol of
an HMSC to this symbol.

W/I
NC

Several input HMSCs were
merged.

There are several HMSCs in the input.
This message informs the user that
according the the synthesis algorithm, the
Synthesizer merges them.

W

NC

Single alternative ignored. There is no alternative local decision for
this decision so the decision is ignored.

W

NC

Variable was changed.

WARNING/ INFORMATION
because of conflict with this
decision.

A variable name in local decision was
changed because this decision conflicted
with another one. They have different
variable names.

W

NC

Undefined variable: <name>. Variable <name> is used in a local
decision but is not defined after DATA
keyword in a text symbol.

 115

C H A P T E R 1 5

Known limitations

In This Chapter
Unsupported MSC constructs ..115
Coregions ...115
Telelogic Tau integration module115

Unsupported MSC constructs
� In basic MSCs, MSC references and inline expressions are not supported.
� MSC references in HMSCs must point to simple MSCs (not to HMSCs).
� Parallel frames are not supported in HMSCs
� MSC references may contain only single MSC names.
� Parameters to MSCs are not supported
� Time constraints are not supported
� (H)MSC guards are not supported

Coregions
Set and reset in coregion can occur in reverse order

Telelogic Tau integration module
On UNIX, if SDL is synthesized successfully but MSC to SDL Synthesizer
produces warning messages these messages remain for a very short time in
the Organizer Log. They are removed by generating SDL GR files.

 117

C H A P T E R 1 6

Troubleshooting

Some possible problems arising in use of MSC to SDL Synthesizer are
described below. Solutions for each possible problem are provided.

Problem Solution
The synthesized SDL
model doesn't match the
input MSCs

This may occur because the intuitive meaning of MSCs
assumed by the user differs from their interpretation by
MSC to SDL Synthesizer. This interpretation is described
in the section . Refer to this section and check the input
MSC specification. From the MSC to SDL Synthesizer
menu. select "Analyze only". The MSC specification is
analyzed with non-critical warnings enabled. They may
point to some semantic errors and warnings in the MSC
specification.

Error messages in the
Organizer Log refer to
some SDL PR or MSC PR
files. It is impossible to
view the errors because
these files do not exist.

Disable removal of generated PR files and repeat the
synthesis.Use the option OPT_CLEAN_GEN_PR=no in
msc2sdl.ini file. See also Configuration file on page
30 .

Error messages in the
Organizer Log advise you
to correct MSC or SDL
symbols in GR diagrams.

The real errors may be located in other symbols and both
MSC to SDL Synthesizer and Telelogic Tau may be
unable to correctly locate them. Try the following: enable
references to PR files in error and warning messages (see
Configuration file on page 30). Repeat the synthesis. The
error messages should then contain references to PR files.
Explore these PR files to find the errors.

 119

Glossary of Terms

Actor
A coherent set of roles that users of the system play
when interacting with the system

Basic MSC
An MSC that is not an HMSC and does not contain
conditions and coregions.

Code generation
A process that produces a textual representation in
selected target language from an internal
representation

Coregion
A group of events of an MSC instance, in which no
ordering is assumed

Diagram
A graphical presentation of a specification, rendered
as a connected graph of vertices (symbols) and arcs
(relationships)

Element
An atomic constituent of a model

Environment
Collection of all external actors for a particular
system

Event
A specification of a significant occurrence that
involves a certain MSC instance and has a location in
time.

Global condition
A condition that is shared by all instances and is used
for describing composition of scenarios or the control
flow (Refer to Composition using conditions (on
page 71)).

Graphical representation
Notation, describing the rendering of a specification
as a two-dimensional collection of symbols and lines
(a diagram)

HMSC
High-level MSC. Refer to ITU standards [Z120-96
(5.5), Z120-2000 (1.7.5)].

Initial condition
Condition that occurs before any other event on a
given MSC for all instances

Instance
A part of an MSC model that is participates in MSC
events and implements the behavior that conforms to
the MSC specification

ITU
International Telecommunications Union – an
international standards institution

Local condition
A condition that is shared by only one instance.

Local decision
A condition that is shared by only one instance and
has a special comment attached to it. Special
semantics are assigned to local decisions (Refer to
Explicit local decisions based on data (on page 88)).

Mapping
A set of rules, describing the translation of one
specification into another

Message
A specification of a communication between two
MSC instances; the output of the message as well as
the input of the message are two MSC events

Model
A semantically closed abstraction of a system

MSC
Message Sequence Chart. MSCs are defined by ITU
in [Z120-96, Z120-2000]. May be either basic MSCs
or HMSCs.

MSC document
A collection of one or more MSCs

120 KLOCwork MSC to SDL Synthesizer Reference Manual

MSC Specification
The set of MSC diagrams describing a system.

PR
Phrase representation

Plain SDL
code generator that produces a minimal SDL model

Scenario
A specific sequence of events that illustrates and
specifies behavior by ordering events

SDL
Specification and Description Language, is defined
by ITU in standard Z.100

State
A condition or situation during the life of an object
during which it satisfies some condition, performs
some activity or waits for some events

State machine
A behavior that specifies a sequence of states an
object goes through its lifetime in response to events,
together with its responses to those events

Synthesis
A deep transformation that produces a (detailed)
implementation, conforming to a given (abstract)
specification; usually there exists more than one
approach to satisfy the specification

System
Behavior, organized to accomplish a specific purpose
and specified (externally) by a collection of scenarios
that describe its interactions with external actors; a
system can structurally decomposed into a collection
of subsystems and specified (internally) by a
collection of scenarios that extend external scenarios
to describe the interactions between subsystems

Textual representation,
Notation, describing the syntax (linear phrase
structure) of a specification

Transition
A relationship between two states indicating that an
object in the first state will perform certain specified
actions and enter the second state when a specified
event occurs and specified conditions are satisfied

Type-based SDL
code generator that produces a rich type-based SDL
model that extensively uses SDL types to allow
evolution of the model without editing the
synthesized part.

Index

A
Action • 53, 83, 104
Actor • 119
Automatic data declarations • 84

B
Basic MSC • 119
Bridging scenarios and state machine models • 7

C
Code generation • 119
Composition using conditions • 71, 104, 119
Composition using HMSCs • 65
Configuration file • 24, 30, 117
Coregion • 119
Coregions • 115

D
Description of the simple network • 93
Diagram • 40, 119

E
Element • 119
Elements of SDL communication • 17
Elements of SDL state machines • 18, 19
Elements of SDL structural diagrams • 16
Environment • 119
Error message list • 108
Error messages • 6, 37, 107
Event • 119
Example of an MSC specification

A simple network • 93
Explicit data declarations • 86, 105
Explicit local decisions based on data • 66, 88,

104, 119

G
Global condition • 119
Graphical representation • 119

H
HMSC • 119

I
Implicit composition • 64
Implicit local decisions based on data • 90
Initial condition • 119
Initial conditions • 71, 74
Input language • 99
Installing MSC to SDL Synthesizer • 6, 21
Installing MSC to SDL Synthesizer on a PC

running Microsoft Windows 98 or Windows
NT • 22

Installing MSC to SDL Synthesizer on a Sun
Solaris or HP-UX workstation • 21

Instance • 42, 119
Instance creation • 55, 83
Instance stop • 58
Introduction • 5, 39, 83
ITU • 119

K
Keywords • 100
KLOCwork Bridge family of products • 8
Known limitations • 99, 115

L
Lexical rules • 101
Local condition • 119
Local decision • 119

M
Mapping • 119
Menus • 25
Message • 44, 83, 103, 119
Message Sequence Charts (MSC) • 14
Model • 119
MSC • 119
MSC and SDL notations • 6, 13
MSC document • 119
MSC PR syntax • 6, 33, 36, 37, 99
MSC specification • 94

122 Index

MSC Specification • 120
MSC to SDL Synthesizer • 9
MSC to SDL Synthesizer in the development

process • 9

P
Plain SDL • 120
PR • 120

R
Running from the GUI for Windows 98/NT • 33
Running MSC to SDL Synthesizer from

Telelogic Tau • 24
Running the KLOCwork MSC to SDL

Synthesizer • 6, 23
Running the KLOCwork MSC to SDL

Synthesizer from the command line • 36

S
Scenario • 120
SDL • 120
Selecting MSCs for synthesis • 25
Simulating MSCs • 24, 27, 31, 37
Specification and Description Language (SDL) •

16
Specifying more complex behavior • 63
Starting up • 24
State • 120
State machine • 120
Syntax rules • 102
Synthesis • 120

Basic MSC scenarios • 6, 39
Compositions of multiple MSCs • 39, 63
Coregions • 31, 35, 37, 42, 61
Data manipulations in MSCs • 47, 48, 54, 83
End of instance handling • 32, 37, 77
Non-determinism considerations • 79
Slices of MSCs • 31, 35, 37, 47, 81, 112

Synthesizer integration with Telelogic Tau • 24
System • 120

T
Telelogic Tau integration module • 115
Terms and concepts • 13
Textual representation, • 120
Timer • 49
Transition • 120
Troubleshooting • 117
Type-based SDL • 120

U
Unsupported MSC constructs • 115
Use KLOCwork MSC to SDL Synthesizer for

SDL training • 12
Use MSCs for architecture definition and

validation • 12
Use MSCs to automatically generate test cases •

11
Use MSCs to design components • 12
Use MSCs to jumpstart your SDL project • 10
Use MSCs to perform automatic early fault

detection • 11
Use MSCs to rapidly prototype requirements •

10

W
Ways to run the KLOCwork MSC to SDL

Synthesizer • 23
What conditions are considered global? • 71, 75
What is the KLOCwork MSC to SDL

Synthesizer? • 6

Copyright © 2001-2002 KLOCwork Solutions
Corporation
All rights reserved

KLOCwork Corporation

Toll-free telephone: 1-866-556-2967
E-mail: sales@klocwork.com or
support@klocwork.com
Website: http://www.klocwork.com

Corporate Headquarters:
1 Antares Drive, Suite 510
Ottawa, Ontario, Canada
K2E 8C4
(613) 224-2277

US Headquarters:
1700 Montgomery Street
Suite 111
San Francisco, CA
94111
(415) 954-7154

	Introduction
	What is the KLOCwork MSC to SDL Synthesizer?
	Bridging scenarios and state machine models
	KLOCwork Bridge family of products
	MSC to SDL Synthesizer
	MSC to SDL Synthesizer in the development process
	Use MSCs to jumpstart your SDL project
	Use MSCs to rapidly prototype requirements
	Use MSCs to perform automatic early fault detection
	Use MSCs to automatically generate test cases
	Use MSCs for architecture definition and validation
	Use MSCs to design components
	Use KLOCwork MSC to SDL Synthesizer for SDL training

	MSC and SDL notations
	Terms and concepts
	Message Sequence Charts (MSC)
	Specification and Description Language (SDL)
	Elements of SDL structural diagrams
	Elements of SDL communication
	Elements of SDL state machines

	Installing MSC to SDL Synthesizer
	Installing MSC to SDL Synthesizer on a Sun Solaris or HP-UX workstation
	Installing MSC to SDL Synthesizer on a PC running Microsoft Windows 98 or Windows NT

	Running the KLOCwork MSC to SDL Synthesizer
	Ways to run the KLOCwork MSC to SDL Synthesizer
	Running MSC to SDL Synthesizer from Telelogic Tau
	Synthesizer integration with Telelogic Tau
	Starting up
	Selecting MSCs for synthesis
	Menus
	Simulating MSCs
	Configuration file

	Running from the GUI for Windows 98/NT
	Running the KLOCwork MSC to SDL Synthesizer from the command line

	Synthesis: Basic MSC scenarios
	Introduction
	Diagram
	Instance
	Message
	Timer
	Action
	Instance creation
	Instance stop

	Synthesis: Coregions
	Synthesis: Compositions of multiple MSCs
	Specifying more complex behavior
	Implicit composition
	Composition using HMSCs
	Composition using conditions
	Initial conditions
	What conditions are considered global?

	Synthesis: End of instance handling
	Synthesis: Non-determinism considerations
	Synthesis: Slices of MSCs
	Synthesis: Data manipulations in MSCs
	Introduction
	Automatic data declarations
	Explicit data declarations
	Explicit local decisions based on data
	Implicit local decisions based on data

	Example of an MSC specification: A simple network
	Description of the simple network
	MSC specification

	MSC PR syntax
	Input language
	Keywords
	Lexical rules
	Syntax rules

	Error messages
	Error message list

	Known limitations
	Unsupported MSC constructs
	Coregions
	Telelogic Tau integration module

	Troubleshooting
	Glossary of Terms
	
	
	
	Actor
	Basic MSC
	Code generation
	Coregion
	Diagram
	Element
	Environment
	Event
	Global condition
	Graphical representation
	HMSC
	Initial condition
	Instance
	ITU
	Local condition
	Local decision
	Mapping
	Message
	Model
	MSC
	MSC document
	MSC Specification
	PR
	Plain SDL
	Scenario
	SDL
	State
	State machine
	Synthesis
	System
	Textual representation,
	Transition
	Type-based SDL

	Index

