
Complexity theory for fellow CS students by Vladimir Prus

This document contains some basics of the complexity theory. It is mostly based on the
lecture course delivered at CS dept. by Meran G. Furugyan. Differences are subtle. Disclaimer
of warranties apply: if you fail an exam because of an error on my part, it’s your problem – you
could attend lectures after all. However, major bugs have some chances to be fixed and can be
reported to <ghost@cs.msu.su>, and new versions will probably appear at http://chronos.cs.
msu.su/~ghost/MyDocuments/Text/complexity.pdf

It is meant that information given here be more usable than in scanned lecture course, but
you should read the text before the exam – you can be burned otherwise, as some parts are,
unfortunately, obscure, and others may contain mistakes of various kinds.

Beware! It is very alpha version.

Contents

1 NP-complete problems 2
1.1 Basic NP-complete problems . 2
1.2 More NP-complete problems . 4

2 Contraction of NP-complete problems 6
2.1 Pseudopolynomial algorithms . 6

2.1.1 Algorithm for Partition . 7
2.1.2 Algorithm for Knapsack . 7
2.1.3 Algorithm for Scheduling . 7
2.1.4 Algorithm for Scheduling with Interrupts 7

2.2 Strong NP-completeness . 8

3 Optimization problems 9
3.1 NP-hard, NP-easy and NP-equivalent problem . 10
3.2 Scheme of proving NP-equivalence . 10

4 Methods of solving NPC problems 11
4.1 Approximate algorithms . 11

4.1.1 Bin packing . 11
4.1.2 Scheduling . 11
4.1.3 Traveling salesman with triangle inequality 12
4.1.4 Knapsack . 13
4.1.5 Vertex cover . 13
4.1.6 Negative results . 14

4.2 Search algorithms . 14
4.2.1 Shortest path . 14
4.2.2 Scheduling . 14

4.3 Randomized algorithms . 15
4.3.1 Polynomials equivalence . 15
4.3.2 Pair-matching . 15

5 Additional proofs 16
5.1 3DM . 16
5.2 Partition . 16
5.3 Graph coloring . 16
5.4 Hamiltonian circuit . 16

Revision 6 1 of 16

Complexity theory for fellow CS students by Vladimir Prus

1 NP-complete problems

Due to limited author’s time, definitions of Turing machine and NP-completeness are omitted.
They can be found in last year’s lectures that are available somewhere in the net.

1.1 Basic NP-complete problems

[There should go tree]

Problem 1 (SAT) Given a CNF E = E1 . . . En, find if it’s satisfiable

Problem 2 (SAT-3) Given a CNF E = E1 . . . En, where each Ek has the form Ek = vk1∨vk2∨
vk3, find if it’s satisfiable

Problem 3 (3DM) Given three sets X, Y, Z of equal cardinality N and a set W ⊆ X × Y × Z,
find if there’s W ′ ⊆W such that |W ′| = N and no pair of elements in W ′ agree in any coordinate.
That is, each element from X, Y and Z occurs in exactly one triad from W ′.

Note: This is very similar to 2-dimensional matching: given two equally sized groups of boys and
girls, and a set of possible pairs, pair ’em all. Complexities, however, are very different.

Problem 4 (Partition) Given a set A = (a1, . . . , an) of numbers, is there a partition of A into
A′ and A′′ (A′ ∪A′′ = A, A′ ∩A′′ = ∅) such that

∑
ai∈A′ ai =

∑
ai∈A′′ ai.

Problem 5 (Vertex cover) Given an undirected graph G = (V,A) and a number K determine
if there’s V ′ ⊆ V such that |V ′| 6 K and ∀(u, v) ∈ A u ∈ V ′ ∨ v ∈ V ′

Problem 6 (Independent Set) Given an undirected graph G = (V,A) and a number K deter-
mine if there’s V ′ ⊆ V such that |V ′| > K and ∀u, v ∈ V ′ u and v are not adjacent in G.

Problem 7 (Clique) Given an undirected graph G = (V,A) and a number K determine if there’s
V ′ ⊆ V such that |V ′| > K and subgraph induced by V ′ is complete.1

Problem 8 (Hamiltonian circuit) Given an undirected graph G = (V,A) find if there’s a sim-
ple circuit2 passing through all the vertices in the graph.

Theorem 1 SAT is in NPC.

Proof. The fact that SAT ∈ NP is considered obvious. The aim is the prove that ∀L ∈ NP,
L 6p L(SAT). From the definition of NP we know that exists NDMT M accepting L, and ∃p
such that time bound is p(n), where n is string length. That is, exists a computation of M with
less than p(n) steps that accepts that string. Existence of such computation can be formulated in
terms of boolean expressions.

Let’s assume that NDMT (Q, q0, qy, qN ,Σ,Γ, ε ∈ Γ \ Σ, δ) have such numbering of states and
symbols: Q = {q0, q1 = qY , q2 = qN , . . . , qr}, Γ = {S0 = ε, . . . , St}. Input string will be denoted
as (l1, . . . , ln).

The formulation used three groups of variables.

i. Qik – is machine in time i in state k.

ii. Hij – is machine in time i look at position j.

iii. Sijl – is machine in time i in position j contain symbol l.

Indices are i = [0, p(n)], j = [−p(n), p(n) + 1], k = [0, r], l = [0, t].

1Subgraph induced by V ′ is (V ′, E′)|E′ = {(x, y) ∈ E, x ∈ V ′, y ∈ V ′}.
2i.e. circuit that has no duplicate vertices

Revision 6 2 of 16

Complexity theory for fellow CS students by Vladimir Prus

Six groups of conjuncts are used.
C1. Assures that machine is in one state at a moment.

i. (Qi,0 ∨ . . . ∨Qi,r).

ii. Qi,k ∨Qi,k′ , ∀k, k′ : 0 6 k < k′ 6 r.

C2. Assures that position of head is determined.

i. (Hi,−p(n) ∨ . . . ∨Hi,p(n)+1).

ii. Hi,j ∨Hi,j′ , ∀j, j′ : −p(n) 6 k < k′ 6 p(n) + 1.

C3. Assures only one symbol in a position.

i. (Si,j,0 ∨ . . . ∨ Si,j,t)

ii. Si,j,l ∨ Si,j,l′ , ∀k, k′ : 0 6 l < l′ 6 t.

C4. Sets initial configuration.

i. S0,1,l1 , . . . , S0,n,ln .

ii. S0,1,0, S0,n+1,0, . . . , S0,p(n)+1,0.

iii. Q0,0.

iv. H0,1.

C5. Makes sure accepting state is reached.

i. Qp(n),1

C6. Guarantees that steps are performed correctly.3

i. (Hi,j ∨ Si,j,l) ∨ Si+1,j,l – positions that are not observed are not changed.

ii. ∀(qk′ , sl′ ,∆) = δ(qk, sl)

{ (Qik ∨Hij ∨ Sijl) ∨Qi+1,k′

(Qik ∨Hij ∨ Sijl) ∨ Si+1,l′

(Qik ∨Hij ∨ Sijl) ∨Hi+1,j+∆

iii. If qk ∈ {qY , qN} use the conjunct given above, but let k′ = k and l′ = l.

Theorem 2 3-SAT is in NPC

Proof of this theorem can be found elsewhere.

Theorem 3 Vertex Cover, Independent Set and Clique are in NPC.

Proof. Let us note that the following statements are equivalent:

• V ′ is vertex cover.

• V \ V ′ is independent set.

• V \ V ′ is a clique in the complement of (V,A).4

Thus, it’s enough to prove NP-completeness of one of these problems, for instance, independent
set. It is done by reduction from 3-SAT. For E = E1 . . . En build a graph by the following rules:

• For each variable xi, make two vertices xi and xi. Add an edge between them.

• For each conjunct Ek, make vertices corresponding to each of the three literals in the con-
junct. Link all three vertices together, making an triangle.

3Recall that x ⇒ y can be written !x ∨ y. Left part of implication will be parenthesized below.
4Complement of (V, A) is (V, {(u, v) : u ∈ V, v ∈ V (u, v) /∈ A}).

Revision 6 3 of 16

Complexity theory for fellow CS students by Vladimir Prus

• Literal is either xi or xi. Vertex for the literal should be joined with vertex corresponding
to either xi or xi, accordingly.

Each variable can yield no more than one vertex in independent set. Each literal similar gives no
more than one vertex. Therefore, cardinality of independent set cannot exceed n+ p. It turns out
that if this number is reached, the CNF is satisfiable.

If E is satisfiable, independent set can be constructed thusly.

• For all variables, append vertex xi to the independent set, if xi = false and append xi

otherwise.

• For each Ek some of it’s literals is true. Since by construction variable vertex, joined with
that literal is not included in the independent set, the literal can be added.

This way, independent set of cardinality n + p is created.
Proof in the other direction is similar. Reader is expected to devise it in much less time than

required to typeset it.

1.2 More NP-complete problems

Problem 9 (Interrupt-free scheduling) Given a number of tasks N , theirs durations τi, num-
ber of processors m and time limit T , determine, whether exists an interrupt-free schedule not
exceeding the specified time

Theorem 4 Interrupt-free scheduling is in NPC.

Proof. Reduction from partition. For the set A create N = |A| tasks with τi = ai, let m = 2,
and T = 1

2

∑
ai.

Problem 10 (Ordering within interval) Given a number of tasks N , theirs durations τi, al-
lowed time ranges (bi, fi) and time limit T , determine whether exists an interrupt-free schedule on
one processor not exceeding the specified time.

Theorem 5 Ordering within interval is in NPC.

Proof. Reduction from partition. For the set A create N = |A| tasks with τi = ai, let m = 2 and
T = 1 + 1

2

∑
ai. Create an auxiliary task with duration of 1 and fix it in the middle by setting

time range to (B/2, B/2 + 1). For all the other tasks set time range to (0, T).

Problem 11 (Hitting set) Given a set S and a collection C1, . . . , Cn, Ci ⊆ S and number K,
is there exist S′ ⊆ S : |S′| < K,∀Ci∃x ∈ S′ : x ∈ Ci.

Theorem 6 Hitting set is in NPC.

Proof. Reduction from vertex cover. For graph (V,A), let S = V and ∀(u, v) ∈ A append set
{u, v} to the collection.

Problem 12 (Set packing) Given a collection C of finite sets, and number K, are there K
elements of C, no pair of which intersect.

Theorem 7 Set packing is in NPC.

Proof. Reduction from 3DM. If sets X, Y, Z do not intersect, then elements of W can be treated
simply as (unordered) sets, and reduction is trivial. Otherwise, renumber elements in Y and Z.

Problem 13 (Subgraph isomorphism) Find if graph G1 contains subgraph isomorphic to
graph G2

Revision 6 4 of 16

Complexity theory for fellow CS students by Vladimir Prus

Theorem 8 Subgraph isomorphism is in NPC.

Proof. Take complete graph with K vertices as G2, and see that clique is reducible to subgraph
isomorphism.

Problem 14 (Bounded degree spanning tree) Given a graph G = (V,A) and a number K
find if there exists spanning tree such that degree of every vertex if less than K.

Theorem 9 Bounded degree spanning tree is in NPC.

Proof. Hamiltonian path is actually a spanning tree with degree less than two (or one)5.

Problem 15 (Knapsack) Having n objects with volumes vi and prices si, and a knapsack of
volume V , can we select some objects (find N ′ ⊆ {1, . . . , n}) so that they can be placed (

∑
i∈N ′ vi <

V) yet their price is more that some given limit S, (
∑

i∈N ′ xi > S).

Theorem 10 Guess what. . .Those who will can demand a $123.3i award ,

Proof. Reduction from partition. For a set A create |A| objects set vi = ai, si = ai, V = S =∑
(ai ∈ A)/2.

Problem 16 (Longest path in graph) Is there a simple path in graph (V,A) passing through
more than K vertices?

Reduction from hamiltonian circuit. Trivial. Note. For oriented graph without circuits this
problem is polynomial, despite the fact that number of simple paths can be exponential.

Problem 17 (Largest common subgraph) Find, is graphs G1 and G2 have some isomorphic
subgraphs with more that K vertices.

Subgraph isomorphism trivially reduces to this problem.

Problem 18 (Minimum Sum of Squares) Given a set (a1, . . . , an) and integers J , K, can A

be partitioned into K disjoint sets so that
∑K

i=1(
∑

Ak)2 6 J .

Reduction from partition. Let K = 2 and J = B2

2 . If partition is possible, then (B
2)2 + (B

2)2 =
B2

2 = J . If partitions is not possible then for every A1 and A2

∑
A1 = B

2 − ε where ε > 0. The
sum them will be B2

2 + 2 ∗ ε2.

Problem 19 (Late tasks weight minimization) Given set of N tasks, with executions times
τi, allowed ranges [bi, fi] and weights wi, is it possible to create schedule for one processors so that
sum of weights of all late tasks is less that K?

Reduction from partition. Let τi = wi = ai, bi = 0, fi = B/2, K = B/2.

Problem 20 (Bin packing) Having an infinite number of bins, each of volume V , can we put
set of N objects with volumes vi into less than K bins.

This problem is extremely similar to scheduling. The only difference seems to be in variable names.

Problem 21 (Cosine product integral) Given numbers a1, . . . , an, is it true that∫ 2π

0
[cos(aix)]dx 6= 0.

1. ∫ 2π

0

cos(ax)dx =
{ 2π if a = 0

0 otherwise

5It depends on whether the graph is directed or not.

Revision 6 5 of 16

Complexity theory for fellow CS students by Vladimir Prus

2.

cos(a1x)cos(a2x) =
cos(a1 + a2)x + cos(a1 − a2)x

2

cos(a1x)cos(a2x)cos(a3x) =

cos(a1 + a2 + a3)x + cos(a1 + a2 − a3)x+
+cos(a1 − a2 + a3)x + cos(a1 − a2 − a3)x

4

3. From the formulae above, we conclude that product of cosines is the sum of 2n−1 cosines,
and coefficients in those cosines correspond to every possible partition of {a1, . . . , an}. So,∫
6= 0 iff exists coefficient equal to zero, i.e. iff answer to partition problem is ”yes”.

Problem 22 (Dominating set) Dominating set in graph G = (V,A) is V ′ ⊆ V : ∀v ∈ V \
V ′∃u ∈ V ′ : (u, v) ∈ A The question is whether is a given graph exists dominating set with size
less than K.

Reduction from vertex cover. Confine discussion to graphs without isolated vertices. Note
that for such graphs any vertex cover is also a dominating set. The opposite is false: consider a
triangle: any single vertex is dominating set but not vertex cover. It is possible to force at least
one end vertex of each edge to be included to dominating set.

Graph G′ is made by creating, for each edge, an auxiliary vertex and joining it with both
endpoints. Vertex cover in original graph will be dominating set in G′ still. On the other side,
every dominating set should contain, for each edge, either one of it’s endpoints or the auxiliary
vertex for the edge. If the former case apply to all the edges, we have vertex cover in original
graph. Otherwise, it is possible to remove auxiliary vertex from dominating set and add one of
the endpoints to it, still having dominating set.

Problem 23 (Ordering with minimum delay(?)) Given set of N tasks, with executions
times τi and allowed ranges [bi, fi], is it possible to create schedule for one processor so that
number of late tasks is less that K?

Unlike with late tasks weight minimization, reduction from partition is not possible directly. We
could try to create τi tasks for original task i, but such a reduction wouldn’t be polynomial.

Take clique problem with graph G = (V,E) (|V | = n, |E| = m) and number J . Let’s use the
obvious fact that if we have J(J − 1)/2 edges, the number of theirs endpoints is not less than J
and equal only in the case of a complete graph. New problem is:

i. N = V ∩ E.

ii. K = m− J(J−1)
2 .

iii. ∀i ∈ V fi = n + m.

iv. ∀i ∈ Efi = J(J+1)
2 .

v. ∀(i, j) ∈ E i ≺ (i, j) j ≺ (i, j).

So, it is required that at least J(J−1)
2 edges are scheduled in first J(J+1)

2 time slots. It is possible
iff exists clique of J vertices. In this case we can schedule all those nodes and then edges.

2 Contraction of NP-complete problems

2.1 Pseudopolynomial algorithms

Consider problem Π. For each I ∈ Π, in addition to length function l(I), define maximum
function M(I), as maximum number used in problem instance. Two pairs (l1,M1) and (l2,M2)
are said to be polynomially equivalent, if two condition hold:

Revision 6 6 of 16

Complexity theory for fellow CS students by Vladimir Prus

1. ∃p1, p2 : l1(I) 6 p2(l2(I)), l2(I) 6 p1(l1(I))

2. ∃q1, q2 : M1(I) 6 q2(M2(I)), M2(I) 6 q1(M1(I))

Such pairs can be used interchangeably.

Definition 1 Algorithm A is pseudo-polynomial if ∃p such that algorithm’s complexity is bounded
by p(l(I),M(I)).

Definition 2 Problem Π is problem with numeric parameters if @p : M(I) 6 p(l(I)), ∀I ∈ Π.

Theorem 11 Unless P= NP, no pseudopolynomial algorithm can exist for NPC problem without
numeric parameters.

2.1.1 Algorithm for Partition

Here a pseudopolynomial algorithm for partition problem is presented. Input is the set
{a1, . . . , an}. Let B =

∑
ai/2. The algorithm creates a matrix T , with elements defined thusly

tij =
{ 1 if ∃N ⊆ {1, . . . , n} :

∑
k∈N ak = j

0 otherwise

The first row is very simple to create: for each ai set t0,ai
= 1. If row i− 1 is already created,

row i is created using these rules.

1. ∀j : ti−1,j = 1 tij ← 1. (If we could form sum S from i − 1 first elements, this sum can
be with equal success formed from first i elements.)

2. ∀j : ti−1,j = 1 ti,j+ai
← 1.

When the matrix is constructed, one should only look at tn,B/2. Complexity is O(nB/2).

2.1.2 Algorithm for Knapsack

You can devise the algorithm yourself.

2.1.3 Algorithm for Scheduling

Recall problem formulation. We have m processors, tasks N = {1, . . . , n} with execution times
τi. The question is whether one can find a schedule with length less that T .

It turns out that if number of processors is fixed then a pseudopolymonial algorithm exists.
Imagine a m-dimensional cube with side of T . Coordinate of each point inside cube indicated how
many time for each processor is already allocated. It is obvious that if one more task is scheduled
then one coordinate is increased and all the others are unaltered. It follows that points outside
the cube shouldn’t be considered, since they will result in no feasible schedule. In consequence,
algorithm is very simple. Create a set of active points and let it to {(0, . . . , 0)}. Then for each
of n tasks, take all points and try every possible assignment of that task to processor, creating
m new points for each one examined. Points that fall outside of cube should be rejected. If after
processing all tasks you have at least one point inside cube, you’re lucky. Complexity is O(nmTm).

2.1.4 Algorithm for Scheduling with Interrupts

It is known6 that multiprocessor scheduling with interrupts has O(n) complexity. Let’s consider
case when interrupts are not instant, but have time σ. It means that if task has stopped running on
processor j1 in time τ1, moved to processor j2, and started running there at time τ2, then intervals
(τ1, τ1 + σ) for processor j1 and (τ2, τ2 + σ) for processor j2 are used for interrupt handling.

6Actually from lectures on network algorithms

Revision 6 7 of 16

Complexity theory for fellow CS students by Vladimir Prus

This problem is in NPC. Reduction is, just like for scheduling without interrupts, from parti-
tion. Use theorem 9 on page 4 and let additionally σ = 0. In this case any feasible schedule will
be interrupt-free and result of theorem 9 apply.

Pseudopolynomial algorithm exist, and is a modification of packing algorithm. The packing
algorithm works rather simply – it places tasks to one processor until any time remains. It
remaining time (τ) is less then task execution time (t), then only last time portion of task is
executed on this processor, and all first part on some other, with interrupt between the tasks.

For our case, there’s extra time for interrupt handling. If some task i is executed on two
different processors, then the following inequality should hold ∃ti + 2σ 6 T , otherwise no feasible
schedule exists. Say that task runs from time 0 to time τ2 on one processor, which then handles
interrupt for time σ and yields task to another processor, which in turn handles interrupt for
σ and the runs the task in interval (τ1, T). It should be noted that τ2 + σ 6 τ1 − σ. Indeed,
τ1 = T − (t− τ2) = T − t + τ2 > 2σ + τ2, from which we conclude that τ2 + σ 6 τ1 − σ.

Necessary condition of schedule existence is
∑

ti 6 mT . Compute α =
∑

ti +(m−1)2σ−mT .
If α 6 0 then schedule exists. Otherwise try to reduce interrupts count by k0 = d α

2σ e. In order
to do it, try to split processors into k groups k = k0 + 1, . . . ,m, so that tasks switches occur
only within one group. To do it just treat every group as one processor with available time
(miT − (mi− 1)2σ) and apply (a modification of) previous algorithm to assign n tasks to groups.
If this is successful, further assignment within groups can always be done.

All we need is a method to enumerate all partitions7. We will generate partitions in reverse
lexicographical order, which is defined thusly:

(m = m1 + · · ·+ mk) ≺ (m = a1 + · · ·+ ap) ⇐⇒
⇐⇒ ∃t : mi = ai, if i < t and mt > at.

Additionally, numbers constituting partition will be sorted, therefore, no duplicate partition will
be created. To get next partition these steps should be used.

1. t = max i : mi > 1. The partition looks like

m = m1 + · · ·+ mt−1 +
>1︷︸︸︷
mt +1 + · · ·+ 1︸ ︷︷ ︸

r times

2. s = mt + r
l = b s

mt−1c

3. New partition is:
m = m1 + · · ·+ mt−1 + · · ·+ mt−1︸ ︷︷ ︸

l times

+s mod (mt − 1)

Number of partitions if O(1
me

√
m), and every new partition costs O(m) operation to create. So, if

m is fixed, algorithm is pseudopolynomial.

2.2 Strong NP-completeness

Definition 3 Π′ is subproblem of Π if DΠ′ ⊆ DΠ and YΠ′ = DΠ′ ∩ YΠ.

Definition 4 Πp is polynomial contraction of Π, if Πp is subproblem Π and ∀I ∈ Πp M(I) 6
p(l(I)).

Definition 5 Π is said to be strong NP-complete if Π ∈ NP and ∃pΠp ∈ NPC.

Statement 1 Unless P = NP, no strong NPC problem has a pseudopolynomial algorithm.
7Mark the difference from meaning of “partition” used in other parts. Here we mean partition of a single number

into a sum.

Revision 6 8 of 16

Complexity theory for fellow CS students by Vladimir Prus

If such algorithm exists (with complexity r(l(I),M(I))), then ∀p Πp can be solved by this algorithm
with complexity O(r(l(I), p(l(I)))), which means that NPC problem Πp in also in P .

There are two methods to establish strong NP completeness.

1. Directly.

2. Using pseudopolynomial reduction.

Definition 6 (Pseudopolynomial reduction) Π 6pp Π′ if ∃f : DΠ → DΠ′ :

1. ∀I ∈ DΠ I ∈ YΠ ⇐⇒ f(I) ∈ YΠ′ .

2. f can be computed by a pseudopolynomial algorithm.

3. ∃p1 : p1(l′(f(I))) > l(I).

4. ∃p2 : M ′(f(I)) 6 p2(l(I),M(I)).

Theorem 12 If Π is strong NP, Π′ ∈ NP and Π 6p Π′, then Π′ is strong NP.

Proof. Take arbitrary polynomial p. According to definition 5 on the page before Πp ∈ NPC.
Then

(4) → M ′(f(I)) 6 p2(l(I),M(I)) 6
6 p2(l(I), p(l(I))) 6

〈3〉 6 p2(p1(l′(f(I))), p(p1(l′(f(I))))) = p(l′(f(I)))

So, Πp is reduced to polynomial reduction of Π′. Reduction is itself polynomial: its complexity
is less than r(l(I),M(I)) 6 r(l(I), p(l(I))) = r(l(I)). Therefore, Πp is in NPC, and Π is strong
NPC.

Problem 24 (3-partitioning) Given numbers a1, . . . , a3n and B, such that
∑

ai = nB and
B
4 6 ai 6 B

2 , is there partition N = N1 ∪ . . . ∪Nn (Ni ∩Nj = ∅) for which ∀j
∑

i∈Nj
ai = B

This problem is strong NPC, but the proof is omitted.8

Theorem 13 Ordering within interval is strong NPC.

Proof. 3-partitioning 6p p OWI(?). Reduction is similar to one used in proof of theorem 5: create
n− 1 auxiliary tasks and fix them evenly, making n intervals of length B each. And go on. . .

Theorem 14 Multiprocessor scheduling without interrupts is strong NPC.

Proof. Reduction is from 3-partitioning. Let ti = ai, m = n, T = B. Since bin packing is very
similar to scheduling, the result apply to it.

Theorem 15 Traveling salesman is strong NPC.

Proof. Hamiltonian circuit is reducible to a pseudopolynomial contraction of TS. Just let

dij =
{

1 if (i, j) ∈ A
2 otherwise

3 Optimization problems

Previously, only recognition problems were considered. In this section will be described notion
of NP-equivalence, which indicates similar complexity as that of NPC problems.

8Omitted in lectures, not only in this text.

Revision 6 9 of 16

Complexity theory for fellow CS students by Vladimir Prus

3.1 NP-hard, NP-easy and NP-equivalent problem

Definition 7 (Turing reducibility) Π1 6t Π2 iff ∃A1, which solves Π1, using algorithm A2 for
solving Π2, and if A2 – polynomial, then A1 – polynomial too.

Definition 8 (Class NPH) NPH = {Π : ∃Π′ ∈ NPC,Π′ 6t Π}

Every recognition problem is Turing-reducible to its optimization variant. Really, having op-
timal solution we can always compare the optimal result with boundary. Hence, all optimization
variants of NPC recognition problems are in NPH.

As an example of NPH problem consider K-th set.

Problem 25 (K-th set) Given set {a1, . . . , an} and numbers B and K (B 6
∑

ai, K 6 2n),
find if there’s at least K subsets of N such that for each such subset N ′ ∑

(ai ∈ N ′) 6 K.

Note: It is not known whether this problem is in NP.

Theorem 16 K-th set is in NPH.

Proof. Reduction from partition. For any instance of partition problem, do as prescribed:

1. Using binary search, find exact value of K∗ = |{N ′ ⊆ N :
∑

(ai ∈ N ′) 6 B
2 }|.

2. Invoke KS({a}, B
2 − 1,K∗). If the answer is “yes”, it means that all sets with element sum

6 B
2 have element sum 6 B

2 − 1 and, in consequence, < B
2 . Thus, partition is not possible.

If the answer is “no”, then by the same considerations, partition exists.

Definition 9 (Class NPE) NPE = {Π : ∃Π′ ∈ NPC,Π 6t Π′}

Definition 10 (NP-equivalent problem) Problem is said to be NP-equivalent if it is both in
NPH and NPE.

3.2 Scheme of proving NP-equivalence

For each optimization problem two facts should be proved:

1. Π 6t Πopt.

2. Πopt 6t Π.

First fact is obvious. To prove the other we can create and auxiliary recognition problem AΠ,
which takes part of solution and tells if the solution can be augmented so that answer of Π is
“yes”. For traveling salesman problem the question of ATS is “is there a path passing through
all the vertices with length less that so-and-so and starting with vertices such-and-such”. Using
auxiliary problem, we can try to prove two other facts:

1. AΠ 6t Π.

2. Πopt 6t AΠ.

If both fact are proved, then Πopt 6t Π, which is what we want. If AΠ ∈ NP, the first fact follows
directly from definition of NP. The second fast should be proved explicitly.

Now the proof is presented for traveling salesman problem. Say that ATS exists and accepts
parameters ni, dij , B and partial path π = {i1, . . . , ik}. Solving the TSopt consist of two parts:

1. Finding the minimum path length. It is bounded by n ∗ max(dij). Using binary search
minimum path length can be found with at most dlog2[n ∗max(dij)]e invocations of ATS.

2. Finding the path. Let l∗ denote the minimum length found above. Then, proceed as specified
below

Revision 6 10 of 16

Complexity theory for fellow CS students by Vladimir Prus

(a) Let π = {}.
(b) ∀i ∈ 1, n : i /∈ π invoke ATS(n, dij , l

∗, (π|i)).9 For some i∗ the call will return true.
Append i∗ to π.

(c) Repeat the above step n times.

This part will invoke ATS O(n2) times.

We conclude that reduction requires polynomial number of invocations of ATS, and ATS 6t

TSopt.

4 Methods of solving NPC problems

4.1 Approximate algorithms

Consider a generic optimization problem: we have set DΠ and for each I ∈ DΠ have to
minimize some function f over set of all feasible solutions X(I), i.e. ?x∗ : minx∈X(I) = f(x∗(I)).
Approximate algorithms in general don’t return x∗ but some value xA, which should be “close”
to x∗. For an instance of a problem, these notions of “closeness” can be used:

1. r1
a = f(xA(I))

f(x∗(I))

2. r2
a = f(xA(I))− f(x∗(I))

3. r3
a = f(xA(I))−f(x∗(I))

f(x∗(I))

For approximate algorithm similar metrics exist

r1
A = supI∈DΠ

r1
A(I) r2

A = supI∈DΠ
r2
A(I) r2

A = supI∈DΠ
r3
A(I)

4.1.1 Bin packing

Consider a naive approach. For each object, pick the first bin that have enough volume to hold
the object.10

At most one bin can be filled with half of capacity or less. Really, is bins j1 and j2 (j1 < j2)
are both filled with V/2 volume, then all content of j2 can be moved j1, and since the algorithm
always considers j1 before j2, it won’t fail to do it. It follows that, at worst, two times more
bins will be used. Formally:

∑
vi > v

2f(xA(I)) ⇒ f(xA(I) < 2(
∑

vi

V) 6 2f(x∗(I)) So, for this
algorithm r1

A 6 2.

4.1.2 Scheduling

Another greedy algorithm with similar quality comes here. We have m processors and n tasks
with execution times ti. Take each task at a moment, and compute L1, . . . , Lm – time that is
already allocated on each processor. Schedule the task to the processor with minimum Li.

Assume that after the algorithm finished Lj1 = maxj=1,nLj and that last task scheduled to
processor j1 is task i. Let L

′

j1
denote time that was allocated to processor j1 just before task i

was scheduled. These inequalities hold:

1. ti 6 f(x∗(I)). Obvious.

2. L
′

j1
6 f(x∗(I)). Just before task i was scheduled, L

′

j1
was the smallest time already allocated.

It means that if no task after i is scheduled at all, and all previous tasks are allocated super-
optimally, with equal time used on every processor11, then total time will not be less than
L

′

j1
, just because arithmetic mean is not less that the minimum element.

9vertical line means list concatenation
10Such algorithms are often called “greedy”
11Such scheduling is, in general, not possible, that why I call it super-optimal

Revision 6 11 of 16

Complexity theory for fellow CS students by Vladimir Prus

Net result is that Lj1 6 2f(x∗(I)) and r
′

A 6 2. For every individual problem f(x∗(I)) > (
∑

ti

m)
df
=

A, and r1
A = f(xA(I))

f(x∗(I)) 6 f(xA(I))
A .

4.1.3 Traveling salesman with triangle inequality

Further discussion assumes that lengths in traveling salesman problem satisfy triangle inequal-
ity and that every pair of towns is connected.

We start with finding shortest spanning tree(SST). Spanning tree is a tree which contains every
vertex of a graph. Shortest spanning tree has the minimum sum of edge lengths. For the case of
an undirected graph, SST can be found as described below:

1. SST ← (i1)

2. (Assumethat) SST = (V
′
, A

′
)

?(u, v) : min(i,j)∈A,i∈V ′ ,j∈V \V ′ dij = duv

SST ← (v
′ ∪ v,A

′ ∪ (u, v))

Note: The algorithm won’t work for directed graph – in particular, because spanning tree in
directed graph can’t have any vertex as root. It imposes additional constraint that dij = dji

Statement 2 At each step, we have tree, which is part of some SST.

Proof. Induction on tree size.

1. Tree of 1 vertex – obvious.

2. Say we have tree Tk, which is part of some SST. Assume that arc (u, v) that we gonna
append to Tk isn’t part of the SST. We will prove that it it part of some other SST.
If (u, v) /∈ SST , then there’s path (u, . . . , x, y, . . . , v), where x ∈ Tk and y ∈ SST \ Tk. It
follows from the fact that in any undirected tree there’s path between any two vertices, and
also because u ∈ Tk and v /∈ Tk. We know that duv 6 dxy. So, by removing edge (x, y) and
adding (u, v), we get new tree, which is also SST.

Path of salesman can be found thusly.

1. Find SST (G).

2. Traverse the SST, returning to where traversal started. Each edge will be traversed two
times.

3. Improve the path. Move the same way as previously, but this time skip already traversed
vertices: find next unvisited vertex and go there directly. It is possible since the graph is
complete, and path length won’t increase thanks to triangle inequality.

Result estimation

1. LSST 6 L∗. Exact result is circuit, which is tree plus one extra edge. Its length L∗ can’t be
less then length of SST.

2. L < 2 ∗ LSST .

3. So, L < 2 ∗ L∗ and r1
a < 2.

Another algorithm used Euler’s circuits – circuits that pass every edge in a graph exactly once.
Such circuit exist in a graph iff degree of each vertex is even. Such graphs are called Euler’s.
[Proof is omitted]

Algorithm is

1. Find SST in graph G.

Revision 6 12 of 16

Complexity theory for fellow CS students by Vladimir Prus

2. Make Euler’s graph of SST.
V ′ = {v ∈ V : degree(v) mod 2 = 1}
|V ′| – even, because

∑
v∈V degree(v) is even for every graph.

G′ = (V ′, A′)
Find minimum pair-matching in G′ (pair-matching with minimum sum of edge weight),
using, for example, min-cost flow algorithm. Append edges from pair-matching to SST.

3. SST with added edges is Euler’s graph. Find Euler’s circuit in it. Build salesman path from
it by skipping over already visited vertices.

Result estimation

1. Resulting path is not longer than LSST + U , where U is sum of lengths of edges in pair-
matching. Let’s prove that U 6 0.5L∗. Take optimal salesman path. Skip every vertex
not in V ′. Each remaining edge joins two vertices from V ′. Assign numbers to edges and
two sets E1 and E2: of edges with odd numbers, and of edged with even number. Both
set correspond to some pair matching so: U 6 min(U1 =

∑
(u,v)∈E1

dij , U2 =
∑

(u,v)∈E2
dij)

Since also U1 + U2 6 L∗, U 6 L∗

2 .

4.1.4 Knapsack

Previously, in section 2.1.2 on page 7, we hinted on how pseudopolynomial algorithm for
knapsack problem can be constructed. Using similar approach, approximate algorithm can be
build. Let S = max si and create matrix A ∈ {true, false}n,nS with elements

a(i, s) = min(0, v) : ∃(N ⊆ {1, . . . , n} :
∑
i∈N

si = S
∑
i∈N

vi = v 6 V)

This matrix can be filled as usual, with complexity O(n2S).
Select a number t and modify all si by setting t lowest bits to zero. We’ll denote the new

values as s
′

i. If N1 and N2 are optimal sets for modified and original problems, correspondingly,
the following holds:

r3
A =

∑
i∈N1

si −
∑

i∈N2
si∑

i∈N2
si

6

∑
i∈N1

si −
∑

i∈N2
s
′

i∑
i∈N2

si
6

∑
i∈N1

si −
∑

i∈N1
s
′

i∑
i∈N2

si
6

n10t

S

If r3
A is to be limited by ε, equality n10t

S = ε is the starting point. From it we deduce that
t = blg εS

n c, and that complexity should be computed using S
10t instead of S, and will be equal to

O(n2 S
10t) = O(n3/ε).

4.1.5 Vertex cover

Algorithm:

1. V ′ ← ∅, A′ ← A

2. Pick any (u, v) ∈ A′. V ′+ ={u, v}. Remove (u, v) and all edges incident either to u or v
from A′.

3. Repeat until A′ = ∅.

If k is the number of picked edges, then |V ′| = 2k. Also, by construction, picked edges share no
endpoint, so |V ∗| > k. We conclude that r1

A 6 2.

Revision 6 13 of 16

Complexity theory for fellow CS students by Vladimir Prus

4.1.6 Negative results

Statement 3 Unless P = NP @ approximate polynomial algorithm for solving traveling salesman
problem with r1

A 6 K, for any constant K.

Proof. If such algorithm exist, for every individual problem construct another one thusly:

G = (V,A)→ n = |V |, dij =
{ 1 (i, j) ∈ A

nK otherwise

Solution of this problem with r1
A 6 K can be converted into exact solution of the original problem.

Statement 4 Unless P = NP @ approximate polynomial algorithm for knapsack problem with
r2
A 6 K, for any constant K.

Proof. Assume contrary. Then for every I create another instance N ′ = N1, v
′

i = vi, s
′

i =
(K + 1)si. Optimal sets are the same. However, if new problem can be solved with r1

A 6 K, we
get f(x∗(I)) − f(xA(I)) 6 K, but left part of this inequality is divisible by k + 1. Hence, the
difference is equal to zero, and exact solution of the modified problem, as well as original one, is
computed.

Statement 5 Unless P = NP @ approximate polynomial algorithm for vertex cover problem with
r2
A 6 K, for any constant K.

Proof. Make K +1 copies of original graph and apply the algorithm to the resulting graph. In at
least one copy, vertex cover will be optimal. Otherwise, total number of vertices in vertex cover
will exceed optimal by at least K + 1.

4.2 Search algorithms

Search algorithms, otherwise known as “branch-and-bound” algorithms, address the complexity
of NPC problems by pruning the search tree using various heuristic considerations.

Suppose that the problem formulation is minx∈Xf(x) and that X is finite. Take X1, X2 :
X1 ∩X2 = X, X1 ∪X2 = ∅. If we can establish without much computational complexity that

FL1 6 minx∈X1 f(x) 6 FU1

FL2 6 minx∈X2 f(x) 6 FU2

and it happens that FL2 > FU1, then X2 doesn’t contain the solution and shouldn’t be searched.
Branch-and-bound algorithms consists, thusly, of two parts – partitioning of the search space and
evaluation/rejection.

4.2.1 Shortest path

Partition: According to starting edges in the path.

Evaluation: If l is total length of initial part, then FL = l and FH = l + F , where F is shortest
remaining path as computed by some fast algorithm, e.g. greedy one.

4.2.2 Scheduling

Partition: Somehow.

Evaluation: Somehow.

Revision 6 14 of 16

Complexity theory for fellow CS students by Vladimir Prus

4.3 Randomized algorithms

Some facts from probability theory:

I. Conditional probability of event A on condition that event B occurred is P (A|B) = P (AB)
P (B) .

It is defined only if P (B) 6= 0.

II. Total probability. Let A, B1, . . . , Bn be events. If P (BiBj) = 0, i 6= j and P (∪iBi) = 1, then
P (A) = P (A|B1)P (B1) + . . . + P (A|Bn)P (Bn).

4.3.1 Polynomials equivalence

Consider a problem: find is g(x1, . . . , xn)
?≡ h(x1, . . . , xn) Before presenting randomized algo-

rithm for the problem, we need one fact.

Lemma 1 (Shwartz’s lemma) If f(x1, . . . , xn) with degree of any variable 6 k, f 6≡ 0,
ξ1, . . . , ξn – independent random variables uniformly distributed over integer values in range
[0, N − 1], for some N then P (f(ξ1, . . . , ξn) = 0) 6 kn

N

Proof. Use induction on the number of variables.

a) n = 1. Polynomial has no more than k roots. If all those roots are integers in the range
[0, N −1], P (f(ξ1) = 0) = k

N . If roots are not such luckily placed, probability will be even less.

b) n − 1 → n. Use this representation f(x1, . . . , xn) = f0(x2, . . . , xn) + f1(x1, . . . , xn)x1 + . . . +
ft(x2, . . . , xn)xt

1, t 6 k. Note that ft(ξ2, . . . , ξn) 6= 0. Using total probability formulae, we can
write

P (f(ξ1, . . . , ξn)) =

61︷ ︸︸ ︷
P (f()|ft(ξ2, . . . , ξn) = 0) P (ft(ξ2, . . . , ξn) = 0) +

+ P (f()|ft(ξ2, . . . , ξn) 6= 0)

61︷ ︸︸ ︷
P (ft(ξ2, . . . , ξn) 6= 0) 6

6 P (ft(ξ2, . . . , ξn) = 0) + P (f(ξ1, . . . , ξn) = 0|ft(ξ2, . . . , ξn) 6= 0) 6

6
k(n− 1)

N
+

k

N
=

kn

N

We are ready to describe the algorithm for polynomials equivalence checking. The question can

be formulated as f
?≡ 0. Assume that function f can be effectively computed. Generate random

integer values uniformly distributed in range [0, 2kn − 1] and compute the value of the function
in that random point. If it is not zero, result is computed. Otherwise make another try, etc. If
f 6≡ 0, then, according to lemma, P (ξ) = 0) 6 kn

2kn = 1
2 . Since all random values are independent,

probability to get M zeroes when f 6≡ 0 is less than (1
2)M . With sufficiently large M , f ≡ 0 is

very probable.

4.3.2 Pair-matching

Pair-matching can be solved using the previous algorithm by means of a simple auxiliary
construction. Create matrix M :

mij =
{

xij if (ai, bj) ∈ A
0 otherwise

Statement 6 Full pair-matching exists iff det(M) 6≡ 0.

Proof. If det(M) ≡ 0 it means that every (. . .) contains zero. In fact, if any () has no zero, then
by increasing at the same time every variable in (), we can make absolute value of determinant
arbitrary large. If every () contains zero, then pair-matching is not possible, since for every possible
correspondence, presence of zero means that some pair can’t be joined because of absence of an
edge.

Determinant is a polynomial. One can compute if effectively using Gaussian elimination. So,
previous algorithm can be applied in this case.

Revision 6 15 of 16

Complexity theory for fellow CS students by Vladimir Prus

5 Additional proofs

Here we will establish NP-completeness for tasks that were not covered in the lecture course.

Currently, proofs can be only told in a personal communication.
(If you have any interest in the topic.)

5.1 3DM

5.2 Partition

5.3 Graph coloring

5.4 Hamiltonian circuit

Revision 6 16 of 16

