
Complexity theory for fellow CS students by Vladimir Prus

This document contains some basics of the complexity theory. It is mostly
based on the lecture course delivered at CS dept. by Meran G. Furugyan.
Differences are subtle. Disclaimer of warranties apply: if you fail an exam
because of an error on my part, it’s your problem – you could attend lectures
after all. However, major bugs have some chances to be fixed and can be
reported to <ghost@cs.msu.su>, and new versions will probably appear at
http://chronos.cs.msu.su/~ghost/MyDocuments/Text/complexity.pdf

Beware! It is very alpha version.

Contents

1 NP-complete problems 1
1.1 Basic NP-complete problems . 2
1.2 More NP-complete problems . 4

2 Pseudopolynomial algorithms 7
2.1 Algorithm for Partition . 8
2.2 Algorithm for Knapsack . 8
2.3 Algorithm for Scheduling . 8

3 Strong NP-completeness 8

4 Turing reducibility 9

5 Methods of solving NPC problems 9
5.1 Approximate algorithms . 9
5.2 Search algorithms . 9
5.3 Randomized algorithms . 9

6 Additional proofs 10
6.1 3DM . 11
6.2 Partition . 11
6.3 Graph coloring . 11
6.4 Hamiltonian circuit . 11

1 NP-complete problems

Due to limited author’s time, definitions of Turing machine and NP-completeness
are omitted. They can be found in last year’s lectures that are available some-
where in the net.

1 of 11

Complexity theory for fellow CS students by Vladimir Prus

1.1 Basic NP-complete problems

[There should go tree]

Problem 1 (SAT) Given a CNF E = E1 . . . En, find if it’s satisfiable

Problem 2 (SAT-3) Given a CNF E = E1 . . . En, where each Ek has the
form Ek = vk1 ∨ vk2 ∨ vk3 find if it’s satisfiable

Problem 3 (3DM) Given three sets W,V,Z or equal cardinality N and a set
W ⊆ W × V × Z, find if there’s W ′ ⊆ W such that |W ′| = N and no pair of
elements in W ′ agree in any coordinate. That is, each element from W , V and
Z occurs in exactly one triad from W ′

Note: This is very similar to 2-dimensional matching: given two equally
sized groups of boys and girls, and a set of possible pairs, pair ’em all. Com-
pexities, however, are very different.

Problem 4 (Partition) Given a set A = (a1, . . . , an) of numbers, find parti-
tion of A into A′ and A′′ (A′ ∪ A′′ = A, A′ ∩ A′′ = ∅) such that

∑
ai∈A′ ai =∑

ai∈A′′ ai

Problem 5 (Vertex cover) Given an undirected graph G = (V,A) and a
number K determine if there’s V ′ ⊆ V such that |V ′| 6 K and ∀(u, v) ∈ A u ∈
V ′ ∨ v ∈ V ′

Problem 6 (Independent Set) Given an undirected graph G = (V,A) and a
number K determine if there’s V ′ ⊆ V such that |V ′| > K and ∀u, v ∈ V ′ u
and v are not adjacent in G.

Problem 7 (Clique) Given an undirected graph G = (V,A) and a number K
determine if there’s V ′ ⊆ V such that |V ′| > K and subgraph induced by V ′ is
complete.

Problem 8 (Hamiltonian circuit) Given an undirected graph G = (V,A)
find if there’s simple circuit passing through all the vertices in the graph.

Theorem 1 SAT is in NPC.

Proof. (The fact that SAT ∈ NP is considered obvious) The aim is the prove
that ∀L ∈ NP, L 6p L(SAT). From the definition of NP we know that exists
NDMT M accepting L, and ∃p such that time bound is p(n), where n is string
length. That is, exists a computation of M with less than p(n) that accepts that
string. Existence of such computation can be formulated in terms of boolean
expressions.

[Definition of NDMT, numbering of states/symbols, &c.]

i. Qik – does machine in time i in state k.

ii. Hij – does machine in time i look at position j.

2 of 11

Complexity theory for fellow CS students by Vladimir Prus

iii. Sijl – does machine in time i in position j contain symbol l.

Indices are i = 0, p(n), j = −p(n), p(n) + 1, k = 0, r, l = 0, ‘?.
Six groups of conjuncts.

C1. Assures that machine is in one state at a moment.

i. (Qi,0 ∨ . . . ∨Qi,r) where i

ii. Qi,k ∨Qi,k′ where ∀i∀k, k′ : 0 6 k < k′ 6 r

C2. Assures that position of head is determined.

i. (Hi,−p(n) ∨ . . . ∨Hi,p(n)+1)

ii. Hi,j1 ∨Hi,j2

C3. Assures only one symbol in a position.

i. (Si,j,0 ∨ . . . ∨ Si,j,r)
ii. Si,j,k ∨ Si,j,k′

C4. Sets initial configuration.

i. S0,1,l1 , . . . , S0,n,ln

ii. S0,1,0, S0,n+1,0, . . . , S0,p(n)+1,0

iii. Q0,0

iv. H0,1

C5. Makes sure accepting state is reached.
Qp(n),1

C6. Garantees that steps are performed correctly. 1

i. (Hi,j ∨ Si,j,l) ∨ Si+1,j,l – positions that are not observed are not changed.

ii. ∀(qk′ , sl′ ,∆) = δ(qk, sl)

{ (Hik ∨Hij ∨ Sijl) ∨Qi+1,k′

(Hik ∨Hij ∨ Sijl) ∨Qi+1,l′

(Hik ∨Hij ∨ Sijl) ∨Qi+1,j+∆

iii. If qk ∈ {qY , qN} use the conjunct given above, but let k′ = k and l′ = l.

�

Theorem 2 3-SAT in in NPC

Proof of this theorem can be found elsewhere.

Theorem 3 Vertex Cover, Independent Set and Clique are in NPC.

Proof. Let us note that the following statements are equivalent

• V ′ is vertex cover.
1Recall that x>y can be written !x∨y. Left part of implication will be paranthesised below

3 of 11

Complexity theory for fellow CS students by Vladimir Prus

• V \ V ′ is independent set

• V \ V ′ is a clique in the complement of (V,A)

Thus, it’s enough to prove NP-completeness of one of these problems, for in-
stance, independent set. It is done by reduction from 3-SAT. For E = E1 . . . En
build a graph by the following rules:

• For each variable xi, make two vertices xi and xi. Add an edge between
them.

• For each conjunct Ek, make vertices corresponding to each of the three
literals in the conjunct. Link all three vertices together, making an triangle

• Literal is either xi or xi. Vertex for the literal should be joined with vertex
corresponding to either xi or xi, accordingly.

The number of independent vertices to search is n+p, where p is the number
of variables. Note that numbers of independent vertices cannot exceed
n+ p.

If E is satisfiable, independent set can be constructed thusly.

• For all variables, append vertex xi to the independent set, if xi = false
and append xi otherwise.

• For each Ek some of it’s literals is true. Since by construction variable
vertex, joined with that literal is not included in the independent set, the
literal can be added.

This way, independent set of cardinality n+ p is created.
Proof in the other direction is similar. Reader is expected to devise it in

much less time than required to typeset it. �

Theorem 4 Hamiltonian circuit is in NPC.

The proof requires a lot of drawing. . .

1.2 More NP-complete problems

Problem 9 (Interrupt-free scheduling) Given a number of tasks N , theirs
durations τi, number of processors m and time limit T , determine, if there’s
exists an interrupt-free schedule not exceeding the specified time

Theorem 5 Interrupt-free scheduling is in NPC.

Proof.Partition is reducible to scheduling. For the set A create N = |A| tasks
with τi = ai, let m = 2, and T = 1

2

∑
ai

Problem 10 (Ordering within interval) Given a number of tasks N , theirs
durations τi, allowed time ranges (bi, fi) and time limit T , determine if there’s
exists an interrupt-free schedule on one processor not exceeding the specified
time.

4 of 11

Complexity theory for fellow CS students by Vladimir Prus

Theorem 6 Ordering within interval is in NPC.

Proof. Partition is reducible to ordering within interval. For the set A create
N = |A| tasks with τi = ai, let m = 2 and T = 1 + 1

2

∑
ai. Create an

auxiliary task with duration of 1 and fix in in the middle by setting time range
to (B/2, B/2 + 1). For all the other tasks set time range to (0, T) �

Problem 11 (Hitting set) Given a set S and a collection C1, . . . , Cn, Ci ⊆ S
and number K, is there exist S′ ⊆ S : |S′| < K,∀Ci∃x ∈ S′ : x ∈ Ci

Theorem 7 Hitting set is in NPC.

Proof. Use vertex cover. For graph (V,A), let S = V and ∀(u, v) ∈ A append
set {u, v} to the collection. �

Problem 12 (Subgraph isomorphism) Find, if graph G1 contains subgraph,
isomorphic to graph G2

Take complete graph with K vertices as G2, and see that clique is reducible to
subgraph isomorphism. �

Problem 13 (Bounded degree spanning tree) Given a graph G = (V,A)
and a number K find if there exists spanning tree such that degree of every vertex
if less than K

Theorem 8 Bounded degree spanning tree is in NPC.

Proof. Hamiltonian path is actually a spanning tree with degree less than two
(or one)2 �

Problem 14 (Knapsack) Having nobjects with volumes vi and prices si, and
a knapsack of volume V , can we select some objects (find N ′ ⊆ {1, . . . , n}) so
that they can be placed (

∑
i∈N ′ vi < V) yet their price is more that some given

limit S, (
∑
i∈N ′ xi > S).

Theorem 9 Guess what. . . Those who will can demand a 123.3i award ©
Proof. Partition is reducible to knapsack. For a set A create |A| objects set
vi = ai, si = ai, V = S =

∑
(ai ∈ A)/2 �

Problem 15 (Longest path in graph) Is there simple path in graph (V,A)
passing through more than K vertices?

Cf. Hamiltonian circuit. Note. For oriented graph without circuits this prob-
lem is polynomial. (Who will doubt?)

Problem 16 (Largest common subgraph) Find, is graphs G1 and G2 have
some isomorphic subgraphs with more that K vertices.

2It depends on whether the graph is directed or not

5 of 11

Complexity theory for fellow CS students by Vladimir Prus

Subgraph isomorphism trivially reduces to this problem.

Problem 17 (Minimum Sum of Squares) Given a set (a1, . . . , an) and in-
tegers J , K, can A be partitioned into K disjoint sets so that

∑K
i=1(

∑
Ak)2 6 J

Reduction is from partition. Let K = 2 and J = B2

2 . If partition is possible,
then (B2)2 + (B2)2 = B2

2 = J . If partitions is not possible then for every A1 and
A2

∑
A1 = B

2 − ε where ε > 0. The sum them will be B2

2 + 2 ∗ ε2

Problem 18 (Late tasks weight minimization) Given set of N tasks, with
executions times τi, allowed ranges [bi, fi] and weights i, is it possible to create
schedule for one processors so that sum of weights of all late tasks is less that
K?

Reduction is from partition. Let τi = wi = ai, bi = 0, fi = B/2, K = B/2.

Problem 19 (Bin packing) Having an infinite number of bins, each of vol-
ume V , can we put set of N objects with volumes vi into less than K bins.

This problem is extremely similar to scheduling. The only difference seems to
be in variable names.

Problem 20 (Cosine product integral) Given numbers a1, . . . , an, is it true
that

∫ 2π

0
[cos(aix)]dx 6= 0.

1. ∫ 2π

0

cos(ax)dx =
{ 2π if a = 0

0 otherwise

2.

cos(a1x)cos(a2x) =
cos(a1 + a2)x+ cos(a1 − a2)x

2

cos(a1x)cos(a2x)cos(a3x) =

cos(a1 + a2 + a3)x+ cos(a1 + a2 − a3)x+
+cos(a1 − a2 + a3)x+ cos(a1 − a2 − a3)x

4

3. From the formulae above, we conclude that product of cosines is the sum of
2n−1 cosines, and coefficients in those cosines correspond to every possible
partition of {a1, . . . , an}. So,

∫
6= 0 iff exists coefficient equal to zero, i.e.

iff answer to partition problem is ”yes”.

Problem 21 (Dominating set) Dominating set in graph G = (V,A) is V ′ ⊆
V : ∀v ∈ V \ V ′∃u ∈ V ′ : (u, v) ∈ A The question is whether is a given graph
exists dominating set with size less than K.

6 of 11

Complexity theory for fellow CS students by Vladimir Prus

Reduction from vertex cover. Confine discussion to graphs without isolated
vertices. Note that for such graphs any vertex cover is also a dominating set.
The opposite is false: consider a triangle: any signle vertex is dominating set
but not vertex cover. It is possible to force at least one end vertex of each edge
to be included to dominating set.

Graph G′ is made by creating, for each edge, an auxillary vertex and joining
it with both endpoints. Vertex cover in original graph will be dominating set in
G′ still. On the other side, every dominating set should contain, for each edge,
either one of it’s endpoints or the auxillary vertex for the edge. If the former
case apply to all the edges, we have vertex cover in original graph. Otherwise,
it is possible to remove auxillary vertex from dominating set and add one of the
endpoints to it, still having dominating set.

Problem 22 (Ordering with minimum delay(?)) Given set of N tasks, with
executions times τi and allowed ranges [bi, fi], is it possible to create schedule
for one processor so that number of late tasks is less that K?

Unlike with late tasks weight minimization, reduction from partition is not
possible directly. We could try to create τi tasks for original task i, but such a
reduction wouldn’t be polynomial.

Take clique problem with graph G = (V,E) and number J . Let’s use the
obvious fact that if we have J(J − 1)/2 edges, the number of theirs endpoints
is not less than J and equal only in the case of a complete graph. New problem
is: |V | = n, |E| =

m
i. N = V ∩ E.

ii. K = m− J(J−1)
2 .

iii. ∀i ∈ V fi = n+m.

iv. ∀i ∈ Efi = J(J+1)
2 .

v. ∀(i, j) ∈ E i ≺ (i, j) j ≺ (i, j).

So, it is required that at least J(J−1)
2 edges are scheduled in first J(J+1)

2 time
slots. It is possible iff exists clique of J vertices. In this case we can schedule
all those nodes and then edges.

2 Pseudopolynomial algorithms

Consider problem Π. For each I ∈ Π, in addition to length function l(I),
define maximum function M(I). Two pairs (l1,M1) and (l2,M2) are said to be
polynomially eqivalent, if two condition hold:

1. ∃p1, p2 : l1(I) 6 p2(l2(I)), l2(I) 6 p1(l1(I))

2. ∃q1, q2 : M1(I) 6 q2(M2(I)), M2(I) 6 q1(M1(I))

7 of 11

Complexity theory for fellow CS students by Vladimir Prus

Algorithm A is pseudo-polynomial if ∃p such that complexity is bounded by
p(l(I),M(I)).

Problem Π is problem with numeric parameters if @p : M(I) 6 p(l(I)),
∀I ∈ Π.

Theorem 10 Unless P = NP, no pseudopolynomial algorithm can exist for
problem without numeric parameters.

2.1 Algorithm for Partition

Here a pseudopolynomial algorithm for partition problem is presented. Input
is the set {a1, . . . , an}. Let B =

∑
ai/2. The algorithm creates a matrix T ,

with elements defined thusly

tij = { 1 if ∃N ⊆ {1, . . . , n} :
∑
k∈N ak = j

0 otherwise

The first row is very simple to create: for each ai set t0,ai = 1. If row i− 1
is already created, row i is created using these rules.

1. ∀j : ti−1,j = 1 tij ← 1. (If we could form sum S from i−1 first elements,
this sum can be with equal success formed from first i elements.)

2. ∀j : ti−1,j = 1 ti,j+ai ← 1.

When the matrix is constructed, one should only look at tn,B/2. Complexity is
O(nB/2).

2.2 Algorithm for Knapsack

You can devise algorithm yourself.

2.3 Algorithm for Scheduling

Long. . .

3 Strong NP-completeness

Π′ is subproblem of Π if DΠ′ ⊆ DΠ and YΠ′ = DΠ′ ∩ YΠ.
Πp is polynomial (?) of Π, if Πp is subproblem Π and ∀I ∈ ΠpM(I) 6 p(l(I))
Π is said to be strong NP-complete if Π ∈ NP and ∀pΠp ∈ NPC
(...)

Definition 1 (Pseudo polynomial reduction) Π 6pp Π′ if ∃f : DΠ → DΠ′ :

1. ∀I ∈ DΠ I ∈ YΠ ⇐> f(I) ∈ YΠ′

2. f can be computed by pseudopolynomial algorithm.

8 of 11

Complexity theory for fellow CS students by Vladimir Prus

3. ∃p1 : p1(l′(f(I))) > l(I)

4. ∃p2 : M ′(f(I)) 6 p2(l(I),M(I))

Theorem 11 If Π is strong NP, Π′ ∈ NP and Π 6p pΠ′, then Π′ is strong
NP.

Proof. Take arbitrary polynomial p. According to (?) Πp ∈ NP . Then

(4)M ′(f(I)) 6 p2(l(I),M(I)) 6 p2(l(I), p(l(I))) 6 〈(3)〉 6 p2(p1(l′(f(I))), p(p1(l′(f(I))))) = p(l′(f(I)))

So, Πp is reduced to polynomial reduction of Π′. Reduction is itself polynomial:
its complexity is less than r(l(I),M(I)) 6 r(l(I), p(l(I))) = r(l(I)). So, if Πp is
in NP. (It should be proved that arbitrary p can be made by proper selection of
p.

4 Turing reducibility

Definition 2 (Turing reducibility) Π1 6t Π2 iff ∃A1, which solves Π1, us-
ing algorithm A2 for solving Π2, and if A2 – polynomial, then A1 – polynomial
too.

Definition 3 (Class NPH) NPH = {Π : ∃Π′ ∈ NPC,Π′ 6t Π}

5 Methods of solving NPC problems

5.1 Approximate algorithms

5.2 Search algorithms

5.3 Randomized algorithms

Some facts from probability theory:

I. Conditional probabily of event A on condition that event B occured is
P (A|B) = P (AB)

P (B) . It is defined only if P (B) 6= 0.

II. Total probability. Let A, B1, . . . , Bn be events. If P (BiBj) = 0, i 6= j and
P (∪iBi) = 1, then P (A) = P (A|B1)P (B1) + . . .+ P (A|Bn)P (Bn).

Consider a problem: find is g(x1, . . . , xn)
?≡ h(x1, . . . , xn) Before presenting

randomized algorithm for the problem, we need one fact.

Lemma 1 (Somebody’s lemma) If f(x1, . . . , xn) with degree of any variable
6 k, f 6≡ 0, ξ1, . . . , ξn – independent random variables with uniformly distributed
over integer values in range [0, N − 1], for some N then P (f(ξ1, . . . , ξn) = 0) 6
kn
N

9 of 11

Complexity theory for fellow CS students by Vladimir Prus

Proof. Use induction on the number of variables.

a) n = 1. Polynomial has no more than k roots. If all those roots are integers
in the range [0, N − 1], P (f(ξ1) = 0) = k

N . If roots are not such luckily
placed, probability will be even less.

b) n−1→ n. Use this repsentation f(x1, . . . , xn) = f0(x2, . . . , xn)+f1(x1, . . . , xn)x1+
. . .+ ft(x2, . . . , xn)xt1, t 6 k. Note that ft(ξ2, . . . , ξn) 6= 0. Using total prob-
ability formulae, we can write

P (f(ξ1, . . . , ξn)) =

61︷ ︸︸ ︷
P (f()|ft(ξ2, . . . , ξn) = 0)P (ft(ξ2, . . . , ξn) = 0) +

+ P (f()|ft(ξ2, . . . , ξn) 6= 0)

61︷ ︸︸ ︷
P (ft(ξ2, . . . , ξn) 6= 0) 6

6 P (ft(ξ2, . . . , ξn) = 0) + P (f(ξ1, . . . , ξn) = 0|ft(ξ2, . . . , ξn) 6= 0) 6

6
k(n− 1)

N
+
k

N
=
kn

N

We are ready to describe the algorithm for polynomials equvivalence check-

ing. The question can be formulated as f
?≡ 0. Assume that functions f and

g can be effectively computed. Generate random integer values uniformly dis-
tibuted in range [0, 2kn − 1] and compute the value of the function in that
random point. If it is not zero, result is computed. Otherwise make another
try, etc. If f 6≡ 0, then, according to lemma, P (ξ) = 0) 6 kn

2kn = 1
2 . Since all

random values are independent, probability to get M zeroes when f 6≡ 0 is less
than (1

2)M . With sufficiently large M , f ≡ 0 is very probable.
Another illustation is 2DM-matching(?). Construct matrix M

mij =
{ xij if (ai, bj) ∈ A

0 otherwise

St. Full 2DM exists iff det(M) 6≡ 0.
Proof. If det(M) ≡ 0 it means that every (. . .) contains zero. In fact, if any
() has no zero, then by increasing at the same time every variable in (), we can
make absolute value of determinant arbitrary large. If every () contains zero,
then 2DM is not possible, since for every possible correspondence, presence of
zero means that some pair can’t be joined because of absence of an edge.

Determinant is a polynimial. One can compute if effectively using Gaussian
elimination. So, previous algorithm can be applied in this case.

6 Additional proofs

Here we will establish NP-completeness for tasks that were not covered in
the lecture course.

10 of 11

Complexity theory for fellow CS students by Vladimir Prus

6.1 3DM

6.2 Partition

The proof can be found at [some URL]

6.3 Graph coloring

6.4 Hamiltonian circuit

11 of 11

